
Robot Raconteur: A Communication Architecture and Library for
Robotic and Automation Systems

John D. Wason and John T. Wen

Center for Automation Technologies & Systems
Rensselaer Polytechnic Institute, Troy, NY 12180

{wasonj,wenj}@rpi.edu

Abstract— Robot Raconteur is a new distributed commu-
nication architecture and library designed for robotic and
automation systems with distributed resources, including data
and program modules. The motivation for this architecture is
based on the need to rapidly connect sensors and actuators
distributed across a network together in a development envi-
ronment, such as MATLAB, without time consuming develop-
ment of data communication infrastructure. The architecture
consists of interconnected nodes, communicating through mes-
sage passing. Each node is typically a process running on a
computer or embedded device, which may be a critical real-
time, non-critical real-time, or event driven process. Robot
Raconteur is organized as three hierarchical levels: channels
that provide communication between nodes, message passing
which routes messages between endpoints within the nodes,
and an object-based client-service model that is built on top
of message passing. The implementation of Robot Raconteur
nodes so far consists of Microsoft C#, Microsoft C++, MATLAB,
MATLAB/Simulink xPC Target, and the Arduino embedded
processor. Implementation on four distributed control systems
consisted of multiple sensors, actuators, and computation nodes
are presented, including smart room (an instrumented room
with distributed lighting control and sensor feedback), dual-arm
robotic system, multi-probe microassembly station, and adaptive
optical scanning microscope.

I. INTRODUCTION

This paper presents a new communication architecture
named Robot Raconteur (RR) for systems containing dis-
tributed resources such as sensors and actuators. Modern
automation systems are typically highly distributed between
multiple computers, processes within a computer, and embed-
ded modules, supporting sensing, actuation, and computation
needs. Communication between elements within this dis-
tributed system can become challenging due to the multitude
of communication technologies and protocols used in the
various devices. While there are some standard protocols
and communication libraries, they are typically not uniformly
supported across a large class of devices, software packages,
and languages. It is often necessary to implement custom

This work is supported in part by the Center for Automation Technologies
and Systems (CATS) under a block grant from the New York State Founda-
tion of Science, Technology and Innovation (NYSTAR) and in part by the
National Science Foundation (NSF) Smart Lighting Engineering Research
Center (EEC-0812056).

interface software which is time consuming and requires
specialized skills. RR is an open source [1] implementation
of a communication specification and reference libraries in-
tended to provide consistent, device and language neutral
communication for a large class of devices. It is currently
implemented for some standard scenarios but the design is
open source, and is intended to be extensible.

Currently available communication mechanisms generally
fall into three categories: transport level, message passing,
and remote procedure calls. Transport level is simply a
pipe to send data streams or packets without any formatting
specification, such as serial ports or TCP/IP. The next level is
message passing that adds structure to the packets to define
the content but still requires the user software to build and
send the messages. The Neutral Messaging Language (NML)
developed at National Institute of Standards and Technology
(NIST) [2] and Robot Operating System (ROS) [3] are
examples. (ROS provides additional software level control,
while RR is simply a communication paradigm.) The highest
level is remote procedure call (RPC) that attempts to expose
functions or in many cases full objects across a process or
network boundary without the user software being aware
of the boundary. This type of RPC has been implemented
by a number of previous technologies including Microsoft
DCOM [4], Microsoft .NET Remoting [5], CORBA [6], and
JAVA RMI [7]. RR consists of a message passing system
and a limited RPC layer built on top of it. It provides a thin
RPC layer by specifying the precise types of data and objects
that can be exposed. Most of the alternative technologies
listed above attempt to create a highly transparent boundary
between objects through complex serialization and cross-
process garbage collection, and tend to be language dependent
because of this generality (CORBA is the one exception but is
notoriously complex). The advantage of RR is that it exposes
a powerful interface that allows the user software to ignore
most of the communication specifics while remaining simple
and compact enough to be easily extended to new computer
or embedded systems.

The central component of Robot Raconteur is message
passing between independent nodes. A node is typically a
process running on a computer or an embedded device. Within



Fig. 1. Layout of the Robot Raconteur message passing system

each node there are endpoints that uniquely connect to an
endpoint in another node (endpoints can only be paired).
Nodes send messages from a start endpoint in one node to
the end-endpoint in another node. Messages contain routing
information and data serialized in a specific format. Channels
connect nodes together, and the routing information in the
message is used by the node to send the message through
the correct channel. This basic architecture is illustrated in
Figure 1.

Built on top of the message passing layer is a client-
service model that is used to expose an object-based interface
of a service to a remote client. Primitives, structures, and
collections are all passed by serialization between the client
and server. Object references are always references to the
services object, and are connections to the remote node. When
the client calls a property or function, the parameters are
packed, sent to the service, executed, the return is packed,
and sent to the client. When an event is fired by the service,
it is packed and sent to all clients. The structures and objects
exposed by a service are defined in a “service definition”
file, similar to Interface Description Language (IDL) [4], [6].
When a client connects to a service, a plain text version
of the service definition is sent to the client to assist in
communication with the service. This paradigm provides an
easily implemented yet powerful interface without the burden
of a seamless object-oriented environment between client and
server.

This paper will describe the main components of the RR ar-
chitecture, and discuss the implementation on four distributed
control systems, including the smart room for lighting control,
dual arm testbed for multi-robot coordination with motion
and force feedback, microassembly testbed with multi-probe
coordination with motion and vision feedback, and adaptive
scanning optical microscope with coordinate scanning mirror
and adaptive mirror motion and image feedback. We will use
smart room as an illustrative example throughout the paper.

II. ROBOT RACONTEUR ARCHITECTURE

The RR architecture is based on the client-server model
supported by message passing between nodes connected by
channels. This section describes the key components of the

Fig. 2. Camera Outputs of the Smart Room

architecture. We will use a distributed lighting control testbed
(called “smart room”) as an illustrative example. This system
consists of multiple RGB tunable light and multiple sensors
(cameras and RGB sensors). The outputs from four ceiling
cameras are shown in Figure 2. We will consider the scenario
where a remote MATLAB session accesses the sensor data
from the smart room, processes the data, and send the lighting
control command to the lights in the room. A host computer
in the room interfaces with the sensors and lights, and is
accessible through TCP/IP.

Client-Service Operation

RR implements an object based client-service model. A
service consists of a base object reference which contains
properties, functions, events, and references to other objects.
The object and structure members are defined in a “Service
Definition” file.

For the smart room, the MATLAB session is the client
node, and the server node is the host computer that interfaces
with the sensors and lights. The server node listens to requests
on a specified port. When the MATLAB client requests
the host service (sensor/actuator interface) from the server
node (through TCP/IP channel communication), the server
node returns the service definition. A (stripped-down) service
definition example for the smart room is shown in Example 1.

When the MATLAB client connects to the service, an
endpoint is created within the client node that is used for that
client object reference. Any object references that are returned
from the first object reference also use this endpoint. This
endpoint is called the “Client Context” and contains the abil-
ity to find object references, process transaction requests for
functions and properties, and dispatch events received from
the service. On the service side, there is a ”Service Context”
which manages references to the ”CameraHost” object and all
its object references. The service creates an endpoint for each
client connection since there can be multiple clients connec-
tion to one service context. See Figure 3 for a depiction of this
client-server architecture. All the endpoints, client contexts,



Example 1 An example Service Definition file
service RobotCameraHost interface

struct CameraBitmap

field int32 width

field int32 height

field uint8[] data

end struct

object RobotDevice

property string Name

function double[] GetProperty(string name)

function int32 SetProperty(string name, double[] val)

end object

object RobotCamera

property string Name

function double[] GetProperty(string name)

function int32 SetProperty(string name, double[] val)

function CameraBitmap GetCurrentStreamFrameCameraBitmap()

end object

object CameraHost

objref RobotDevice[] robdevice

objref RobotCamera[] robcamera

property int32 RobotCameraCount

property int32 RobotDeviceCount

end object

Fig. 3. Configuration of Client-Service communication

and service contexts exist within the node. Endpoints define
connections between nodes through channels.

To facilitate the variation in member names and parameters
between different types of objects, interface code is automat-
ically generated. This code is often called “serialization” or
“thunk” code [5], [7]. This generated code takes the member
operations and parameters, and packs or unpacks them into
or out of messages. For languages like C# that are strongly
typed this code is generated at compile time. For languages
like MATLAB that are weakly typed this code is generated
as needed. The automatic generation saves the developer

Fig. 4. Hierarchal contents of a message

significant time and makes using RR inexpensive in terms
of development effort. The interfaces can also be written
manually if necessary as the code is open source with well
defined serialization format.

Message Contents

An RR message contains routing information followed by
the data. The header contains protocol information, routing
information, the number of message elements in the message,
and the total size of the message. A message contains one or
more specific message elements that communicate a piece of
data or a command. A specific type of message element is a
“service call” message element. These elements contain extra
data to call a property or function of a specific object within
a service, send an event from service to client, or manage
connections to a service. The lowest level within a message is
a “message element”. A message element contains the actual
data, and can be either a primitive, structure, or collection
type. See Figure 4.

Channels

Channels carry message between nodes. They are seper-
ate from endpoints, meaning that a single channel can be
used to connect multiple endpoint pairs, or there may be
multiple paths for a message to take to travel between
two endpoints. The routing assumes that nodes are directly
connected by a channel to communicate. Currently, there
are three channel types implemented: TCP/IP channel for
communicating over a network or the Internet, a Windows
named pipe channel for communicating between processes
on the same computer, and a serial port channel for com-
municating with low computational-power embedded devices
such as the Arduino module [8]. While there is a published
protocol for transmitting messages it is not necessary for
channels to use the specified protocol. Different technologies
may require specific protocol formats, and this is left to the



channel to determine. For example, the serial channel uses
a highly simplified version of the protocol to communicate
with embedded devices that are not capable of processing the
standard protocol.

Smart Room Example

From MATLAB, the command below issues a client re-
quests to connect to the service definition for the service path
CameraHost:
smartroom=RobotRaconteur.Connect

(’tcp://smartroom:6257

/RobotCameraHost/CameraHost’);

Once the MATLAB client establishes connection to the
service, RobotCameraHost, a MATLAB class smartroom is
generated and returned, which sends all client requests to the
objects at the CameraHost service path.

To access lights, we use the command below to request
an object reference that corresponds to the lighting control
on the server node:
lights=smartroom.get robdevice(int32(0));

This client request gets translated to a server side
request for the object type at the service path
CameraHost.robdevice[0]. It then registers to receive
events from this object. The class, light, is returned in
MATLAB that references this service path. Similarly, the
sensor access is established through:
camera1=smartroom.get robcamera(int32(0));

To set the lighting level, the client sends a function call
to the object reference that was requested in the previous
commands. The parameters are packed into a message as
message elements. The message entry tells the service that
it is a function call, the service path of the reference object,
and the name of the member (function) that is being called.
The return is packed into a message and sent to the client. An
example lighting control command for setting RGB intensity
for lights 1 and 2 to (0.7,0.3,0), we use the command:
lights.SetProperty(’SetRGBRange’,

[1,2,0.7,0.3,0]’);

Similarly, to acquire a bitmap image, we use
I=CameraBitmapToImage

(cam.GetCurrentStreamFrameCameraBitmap);

III. EXAMPLE IMPLEMENTATION

Robot Raconteur has been used to implemented on a num-
ber of different distributed robotic and automation systems
at Rensselaer Polytechnic Institute: dual arm system, adap-
tive scanning optical microscope (ASOM), microassembly
testbed, and smart room. The first three contain real time com-
ponents executed on the Mathworks xPC Target [9] platform.
For the smart room, the operation does not involve real-time
components, and RR simply allows the client control software
(e.g., MATLAB) to connect to the sensors and lights in the
room, read sensors, and change the lighting intensity in each
color channel.

The three real-time systems use a distributed real-item
model that includes three hierarchal levels: critical real-time,
non-critical real time, and event driven (Figure 5(a)). The
critical real-time portion is implemented on computers run-
ning the xPC Target and is typically the dynamic and motion
control portion of the system. Robot Raconteur on the xPC
Target systems allows for two types of objects to be exposed:
state buses and lookup tables. The state bus is a Simulink bus
object with bundled signals that can be read and set over RR.
This state bus is usually augmented to contain signals for
a state-machine trajectory controller, sensor measurements,
and commands that are issued by adjusting the value of the
signals. The lookup table is used to program movements
by specifying positions at sampled times. The lookup table
translates the current sample number to the corresponding
value in the table. The RR interface allows the client to
download new lookup table data during runtime to adjust the
motion. Figure 5(b) is a signal flow diagram of the an xPC
Target RR Simulink program.

(a) System diagram

(b) Simulink xPC Target program

Fig. 5. Signal flow diagram of overall system and real-time component

The non-critical real-time loop is typically on the Windows
machine and includes operations that are more computation-
ally intensive and do not need fast update rates, such as
vision processing and trajectory generation. An event driven
controller such as MATLAB or other logic/user interface



Fig. 6. Dual Arm Testbed

connects to this service.
Dual Arm System: The dual arm system consists of total
18 motion degrees of freedom working in coordination. The
system has two 6-dof PUMA 560 robots and two 3-dof base
transporters supporting the robots (Figure 6). The two PUMA
robots and the two transporters (together) are controlled by
three xPC Target computers (each supporting 6-dof) con-
nected by a local area network. A fourth xPC Target machine
is used for real-time coordination between the three robot
computers. The xPC Target computers expose an RR service
over TCP that is accessed by a separate Windows computer
for event driven and non-critical real time information transfer
between host and xPC Target. To communicate between
xPC Target computers, UDP packets are transmitted at high
rates at about 1 kHz. No UDP error correction is necessary,
as each packet is independent of the previous packet and
dropped packets will appear as delay in data. Due to the high
update rate any delay due to dropped packet will only affect
performance marginally. The packets contain time stamps so
lost data stream can be quickly detected. On the Windows
computer, there is a “Dual Arm System Host” program that
connects to each of the xPC Target machines and adds some
basic functionality, including the ability to move the robots
using a wireless gamepad. MATLAB provides the high lever
user interaction and programming environment.
Microassembly Testbed: The Microassembly Testbed [10]
consists of two 6-dof probes (3-dof coarse stepper stage and
3-dof fine piezo positioner), a 3-dof platform, two microscope
cameras, and a number of auxiliary sensors and actuators
(shown in Figure 7). This system follows the same basic
structure as the dual arm system, however there is only one
xPC Target computer to control the motion of all axes and the
host program connects to the auxiliary components as well.
ASOM: The ASOM [11] system has one camera, a two-axis
fast steerable mirror, and a deformable mirror that adaptively
corrects the optics of the microscope (shown in Figure 8). The
scanning mirror is controlled by an xPC Target computer.
On the Windows machine all three elements are controlled
through plugins in “Robot Camera Host”. MATLAB provides

Fig. 7. Microassembly Testbed

Fig. 8. ASOM Testbed

the high lever user interaction and programming environment.
Smart Room: The smart room system is controlled through a
service provided by “Robot Camera Host,” which in addition
to supporting four cameras also has plugins for the lighting
and sensor devices. Robot Raconteur allows users to connect
over the Internet locally or even across the country in the
MATLAB environment.

IV. ASSESSMENT OF ROBOT RACONTEUR

Comparison with Other Distributed Architectures

Robot Raconteur belongs to the family of technologies
facilitating communication in a distributed software environ-
ment which includes ROS, DCOM, CORBA, and others.
RR is specifically designed for automation systems with
distributed sensors and actuators containing real-time and
event-driven processes, in contrast to other more general
purpose technologies. CORBA and ROS have been com-
monly used in automation systems, however RR has several
advantages. It creates a “soft” connection in terms of the
message format and uses pluggable channels that allow for
adaptation to technologies that is invisible to the end user
programs. The “soft” connection format means that non-
complied or weakly-typed languages utilize the requirement



that each service provide a plain-text service description that
is easy to parse. The MATLAB binding for each service type
is generated at runtime and does not need anything more
than the URL to attach to a service and provide a powerful,
fully featured interface. The pluggable channel architecture
has allowed the Arduino channel to be developed in a way
that is invisible to the client consuming the service, but
allows for embedded software to be rapidly developed, and
for new embedded services to be operated by any language
that RR is implemented (assuming the channel has also been
implemented for the platform). These two important features
do not exist in CORBA or ROS.

Real-Time Consideration

Performance is critical to any real-time system. RR is a
serialization and network protocol, and any component of
this type will inherently have some overhead. Exact statistical
analysis has not been conducted but anecdotal observation
can provide some general understanding of performance. A
transaction between the client and service over a local gigabit
ethernet with TCP between two computers or over a named
pipe on the same computer generally takes between 500
µs to 2 ms. The exact delay depends on the speed of the
computer and network hardware. When large arrays on the
order of megabytes are repeatedly sent over the network
with the current C# reference library, network utilization can
approach 80% of a gigabit ethernet connection. While on
local ethernet networks the TCP channel usually provides
excellent performance. However, an occasional lost packet
can theoretically cause delays. A custom UDP channel has
been considered but this would not take advantage of error
correction capabilities in modern network interfaces, and
also increases the CPU load. A better option is to adjust
timeouts in the network interface (Windows computers do
adjust network error checking parameters automatically), but
this has not been implemented. If the underlying hardware and
software is capable of real-time operation, real-time critical
implementations can be developed within RR.

V. CONCLUSIONS

This paper presents a new distributed architecture, Robot
Raconteur, to facilitate operation in a distributed automation
system. It provides a simple yet sophisticated object-based
client-service paradigm that enables two-way communication.
At the lowest level it is a method to transmit messages
between nodes through channels using either the predefined
protocol or a custom channel design. The client-service model
builds on top of the message passing. Interface code for
specific services are automatically or dynamically generated,
saving the developer from time consuming implementation
of protocol software. The serialization method and service

definition available at runtime without any specific a priori
knowledge of the device means that RR will function well in
a dynamic network environment. Reference implementations
for Robot Raconteur have been implemented for Microsoft
C#, Microsoft C++, MATLAB, MATLAB/Simulink xPC Tar-
get, and the Arduino embedded processor. Four systems are
presented using RR architecture. The protocol and code are
open source and extension to new software languages and
devices is encouraged.

Current effort involves improving error handling, devel-
oping an ad-hoc communication method for automatic dis-
covery and connection of nodes and available services, and
supporting exclusive locks on service objects and session
objects that are specific to a connection. Currently there is
no language-independent method of error transmission during
client-service operation. Errors thrown during operation are
correctly relayed between client and service, however, the
error names and error data are still language dependent.
In longer term, we envision the automatic configuration of
a distributed system where users may not have technical
knowledge to configure a network with complex topology.
Examples of similar technologies are Java JINI [12] and ad-
hoc mobile networks [13].

REFERENCES

[1] Robot raconteur development website. [Online]. Available:
http://robotraconteur.sourceforge.net

[2] M. Moore, V. Gazi, K. Passino, W. Shackleford, and F. Proctor,
“Complex control system design and implementation using the NIST-
RCS software library,” IEEE Control Systems Magazine,, vol. 19, no. 6,
pp. 12–28, 2002.

[3] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operat-
ing System,” in International Conference on Robotics and Automation,
2009.

[4] R. Grimes and R. Grimes, Professional DCOM programming. Wrox
Press Ltd. Birmingham, UK, UK, 1997.

[5] J. N. Scott McLean and K. Williams, Microsoft .NET Remoting.
Microsoft Press, 2002.

[6] S. Vinoski, “Distributed object computing with CORBA,” C++ Report,
vol. 5, no. 6, pp. 32–38, 1993.

[7] A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for
the Java TM system,” Computing, vol. 9, no. 4, pp. 265–290, 1996.

[8] Arduino AVR Prototyping Platform. [Online]. Available:
http://www.arduino.cc/en/

[9] MathWorks. (2010) xPC Target 4.3: Perform real-time rapid cotnrol
prototyping and hardware-in-the-loop simulation. [Online]. Available:
mathworks.com/mason/tag/proxy.html?dataid=13108&fileid=63506

[10] J. D. Wason, J. T. Wen, Y.-M. Choi, J. J. Gorman, and N. G. Dagalakis,
“Vision guided multi-probe microassembly of 3d microstructures,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, October 2010.

[11] B. Potsaid, Y. Bellouard, and J. Wen, “Adaptive scanning optical
microscope (ASOM): a multidisciplinary optical microscope design for
large field of view and high resolution imaging,” Opt. Express, vol. 13,
no. 17, pp. 6504–6518, 2005.

[12] W. Edwards, core JINI. Prentice Hall PTR, 1999.
[13] A. Boukerche, Algorithms and protocols for wireless and mobile ad

hoc networks. Wiley-IEEE Press, 2009.


