Robot Raconteur® version 0.8: An Updated Communication System for
Robotics, Automation, Building Control, and the Internet of Things

John D. Wason

Wason Technology, LLC
Tuxedo, NY 10987

wason @wasontech.com

Abstract— Robot Raconteur® (RR) is a powerful communica-
tion system for robotics, automation, building control, and the
“Internet of Things”. It has been used extensively in research at
several universities and has reached Version 0.8, the first ’beta”
version ready for commercial use. A paper describing an early
experimental version was presented at CASE in 2011 [1]. This
paper presents the new programmatic, transport, and security
features available in the new library. These new features include
anew C++ based core library, an ‘“Augmented Object Oriented”
data model, transport security using TLS, WebSocket support,
HTMLS5/JavaScript Browser support, and ASP.NET web server
support. The new C++ library provides bindings for Python,
MATLAB, C#, and Java. The library can run on all major
operating systems and device architectures. Several example
systems are presented.

I. INTRODUCTION

Robot Raconteur® (RR) is a powerful communication
system for robotics, automation, building control, and the
“Internet of Things”. It has been used extensively in research
at several universities and has reached Version 0.8, the first
“beta” version ready for commercial use. A paper describing
an early experimental version was presented at CASE in
2011 [1]. This paper presents the new programmatic, trans-
port, and security features available in the new library.

RR was developed to aid in the rapid integration of
complex systems consisting of components that differ in
manufacturer, platform, interface, and application program-
ming interface (API) language. With existing communication
technologies, extensive time was required to develop and
configure the communication interface so that commands
and data could be understood by both the client and service.
Existing technologies that were easier to configure generally
were not platform/language independent, or had high latency.
An example is Java RMI [2] which is fairly easy to use, but
is only Java compatible and does not have automatic type
configuration abilities. CORBA [3] is another example that
is platform independent but requires significant configuration
and development on both the client and service before use.
RR is designed to provide “plug-and-play” connections,
meaning that a client receives all the type and command in-
formation required to communicate with a service at runtime.

Special thanks to the Smart Lighting Center and the Center for Automa-
tion Technologies and Systems, both at Rensselaer Polytechnic Institute,
Troy, NY, for the use of example images in this paper.

This provides an “instant-on” user experience, where fully
featured object-oriented interfaces to the service are created
dynamically upon connection with no additional effort by the
user. In compiled languages where dynamic type generation
is not possible, code generation is used to provide a similar
experience but with fixed supported types. Services also use
either dynamic types or code generation to greatly simplify
the development process.

RR has a number of advantages over existing technology:

o Automatic data type negotiation at runtime for dynamic
languages and code generation for compiled languages.
This allows for plug-and-play operation with minimal
development effort.

o “Augmented Object Oriented” model allowing for trans-
actional, streaming, and (soft) real-time communication
both client-to-service and service-to-client.

o Support for complex value data types with dynamic type
negotiation.

o Support for numerous hardware platforms and software
languages with more being added over time.

o Asynchronous operations.

o Security using authentication and TLS.

o Automatic node discovery.

o WebSocket support.

o WebBrowser client support.

o ASP.NET server support.

« Services can accept multiple client connections.

e RR does not require a master node.

While some of these features may exist in other communi-
cation packages, the combination of features and ease of use
with automatic negotiation is unique to RR.

RR is similar to other Remote Procedure Call technolo-
gies (RPC) [4] but provides a unique “Augmented Object
Oriented” [5] interface in combination with communication
transports that provides secure transport over different tech-
nologies. The “Augmented Object Oriented” design means
that objects have eight types of “members” each provid-
ing unique functionality. The member types are “property”,
“function”, “event”, “objref”, “pipe”, “callback”, “wire”, and
“memory”’. Objects also have inheritance to provide forward
and backward compatibility. The definitions of the object
and data types are sent at runtime as a “Service Definition”

allowing languages like Python, MATLAB, and JavaScript
to dynamically provide client interfaces to services without
any information about the service before the client connects.

RR uses “Transports” to communicate between “Nodes”.
The currently available transports are “TCP” for use with
standard wired and wireless networking, “Local” for commu-
nication between programs running on the same computer,
and “Hardware” for communicating with devices connected
through USB, PCle, and industrial fieldbuses. The TCP
transport provides security using TLS and X509 certificates
issued by Wason Technology, LLC providing industry stan-
dard levels of security. The TCP transport is also capable of
connecting and accepting the HTTP WebSocket [6] protocol
providing compatibility with existing web browsers and
web servers. Auto-discovery is available to find nodes and
determine the connection URLs. Nodes can be discovered
by identifier or type of service.

The core RR library is written in C++ using the Boost [7]
libraries and is capable of running on a number of platforms.
It has minimal dependencies making it highly portable.
Currently RR has been compiled and tested on Windows (x86
and x64), Linux (x86, x86_64, ARM hard-float, ARM soft-
float, PowerPC, MIPS), Mac OSX, Android (ARM, x86),
and i0S. Language bindings are used to allow access to the
library from other languages. Additional supported languages
include C#, Java, Python, and MATLAB.

Two additional implementations are available for use in
a web browser written in JavaScript and for use in an
ASPNET server written in pure C#. These implementations
take advantage of the support for WebSockets [6] over TCP
to allow for compatibility with existing web infrastructure.
The HTMLS5/Javascript implementation has been tested with
Chrome, Firefox, Internet Explorer, Edge, and Safari. The
pure C# implementation (Called RobotRaconteur. NET/CLI)
has been tested with IIS and allows RR to run inside a web
server.

RR is very different than other currently used technologies
in robotics communication, Robot Operating System (ROS)
[8] and Data Distribution Service (DDS). ROS provides very
simple communication using “services” and “topics”. “Ser-
vices” in ROS provide a single function, and “topics” provide
a way to publish data to subscribed nodes. These methods
are far less capable than the “Augmented Object Oriented”
model provided by RR. ROS also requires a central “Master
Node” and does not provide security for its connections.
DDS is not an RPC technology and is instead analogous
to a distributed real-time database. DDS has the advantage
of being capable of hard real-time communication. This
capability is being developed for RR. While they are both
used in automation systems, DDS and RR are not similar
technologies. The paper presented in 2011 [1] compares RR
to other more traditional RPC technologies and for brevity
the comparison is not repeated here.

RR is released under a commercial license that is royalty-
free when using the TCP or Local transport with the excep-
tion of the TLS certificates for secure communication. The
certificates for use with TLS are sold for a nominal cost by

Wason Technology, LLC. RR is not currently open source,
and the reasoning for this decision is discussed in Section
VIL

The rest of this paper discusses the “Augmented Object
Oriented” model, the available transports, the compatibility
of the software, and the license. It concludes with some
example systems and a discussion of future work. This paper
is a brief introduction to the RR system. Please see [9] for
more detailed information.

II. “AUGMENTED OBJECT ORIENTED” MODEL

Example 1 Service definition file

tal.create.robdef”

“experimen-

#Service to provide sample interface to the iRobot Create
service experimental.create

option version 0.5

struct SensorPacket
field uint8 ID
field uint8[] Data
end struct

object Create
option constant intl6 DRIVE.STRAIGHT 32767
option constant intl6 SPIN.CLOCKWISE —1
option constant intl6 SPIN.COUNTERCLOCKWISE 1

function void Drive(intl6 velocity , intl6 radius)

function void StartStreaming ()
function void StopStreaming ()

property int32 DistanceTraveled
property int32 AngleTraveled
property uint8 Bumpers

event Bump()
wire SensorPacket packets

callback uint8[] play_callback(int32
DistanceTraveled , int32 AngleTraveled)

end object

RR is designed to be used primarily with robotic systems.
These systems require different data types and data delivery
methods when compared to business applications that would
use a technology such as SOAP [10]. Unlike other object-
oriented RPC technologies such as Java RMI [2] and .NET
Remoting [11], RR has a strong distinction between data and
objects. All objects are owned by the service, and RR allows
the clients to access them through “object references” or
“proxies”. Data can then be transfered between the client and
the service using the object‘s “members”. The description
of what objects and data types are available in the service
are described by “service definitions” that are transmitted to
the client at the time of connection. This allows for dynamic
“object references” to be generated using meta-programming
in Python, MATLAB, JavaScript, and potentially many other
languages. This capability in combination with the rich com-
patibility and object/data model is unique to RR. Examples

Example 2 Service definition file

tal.createwebcam.robdef”

“experimen-

#Service to provide sample interface to webcams
service experimental.createwebcam

option version 0.5

struct WebcamImage
field int32 width
field int32 height
field int32 step
field uint8[] data
end struct

struct WebcamImage_size
field int32 width
field int32 height
field int32 step
end struct

object Webcam
property string Name
function WebcamImage CaptureFrame ()

function void StartStreaming ()
function void StopStreaming ()
pipe Webcamlmage FrameStream

function WebcamImage_size CaptureFrameToBuffer ()
memory uint8[] buffer
memory uint8 [«] multidimbuffer

end object

object WebcamHost
property string{int32} WebcamNames
objref Webcam{int32} Webcams

end object

1 and 2 are example service definitions. See [9] for more
information about these concepts.

RR supports a wide variety of data types, also referred to
as “value types”. The basic data types are called “primitives”
and consist of floating point numbers of various precision,
integers of various precision, and strings. Numeric primitives
can be combined into arrays of single dimension or multiple
dimensions. All data types can be combined into lists or
maps. Maps can use integer or string keys. Structures are
defined in service definitions and combine any data type
(including other structures) into familiar organizational units.
Finally, the “varvalue” keyword can be used to allow any
allowed data type to be transmitted or received with its type
determined at runtime. These data types are discussed in
detail in [9].

An object is roughly defined as a collection of mem-
bers that provide functionality acting on the object. Many
programming languages have members of types: properties,
functions, and events. RR uses an “Object Oriented Model”
that has eight member types. These member types are
necessary because of the latency in communication that
exist between client and service. In a standard programming
language where a function call has effectively zero latency,
the members can all be emulated easily using just functions.
With the latency of the communication, it becomes very
difficult to emulate the members and requires significant
“boilerplate code”. Some members like the “wire” may

have poor performance. The organization of the members is
also useful in creating friendly programming interfaces that
require minimal if any “boilerplate code”.

Properties (Keyword: property)
Properties are similar to class variables (field).
They can be written to (set) or read from (get).
A property can take on any value type.

Functions (Keyword: function)
Functions take zero or more value type parameters,
and return a single value type. The parameters of
the functions must all have unique names. The
return value of the function may be void if there
is no return.

Events (Keyword: event)
Events provide a way for the service to notify
clients that an event has occurred. When an event
is fired, every client reference receives the event.
The parameters are passed to the client. There is
no return.

Object References (Keyword: objref)
A service consists of any number of objects. The
root object is the object first referenced when
connecting to a service. The other object references
are obtained through the ob jref members. These
members return a reference to the specified object.
Because RR has a strong distinction between data
and objects, only an objref can return a reference
to another object. objref can be defined as a
specific type or have type “varobject” which is
determined at runtime.

Pipes (Keyword: pipe)
Pipes provide full-duplex first-in, first-out (FIFO)
connections between the client and service. Pipes
are unique to each client, and are indexed so that the
same member can handle multiple connections. The
pipe member allows for the creation of “PipeEnd-
point” pairs. One endpoint is on the client side, and
the other is on the server side. For each connected
pipe endpoint pair, packets that are sent by the
client appear at the service end, and packets that are
sent by the service end up on the client side. Pipes
are useful for streaming data where each packet
is important. It can also be used to transfer large
amounts of data in sequential packet form. If only
the most current value is needed, a “wire” member
can be used instead.

Callbacks (Keyword: callback)
Callbacks are essentially “reverse functions”, mean-
ing that they allow a service to call a function on a
client. Because a service can have multiple clients
connected, the service must specify which client to
call.

Wires (Keyword: wire)
Wires are very similar to pipes, however rather
than providing a stream of packets the wire is used
when only the “most recent” value is of interest.

It is similar in concept to a “port” in Simulink.
Wires may be transmitted over lossy transports
or transports with latency where packets may not
arrive or may arrive out of order. In these situations
the lost or out of order packet will be ignored and
only the newest value will be used. Each packet has
a timestamp of when it is sent (from the sender’s
clock). Wires are full duplex like pipes meaning
they have two-way communication. An example
use of a wire is to transmit the current angles of
the joints of a robot.
Memories (Keyword: memory)

Memories represent a random-access segment of
numeric primitive arrays or numeric primitive
multi-dim arrays. The memory member is available
for two reasons: it will break down large reads and
writes into smaller calls to prevent buffer overruns
(most transports limit message sizes to 10 MB)
and the memory also provides the basis for future
shared-memory segments.

RR has support for inheritance and importing existing ser-
vice definitions and using the imported types. This allows for
forward and backward compatibility. Newer devices can add
members while maintaining compatibility with an existing
object type. If a client connects that does not understand
the new object type, it can fall back to the older data type
and still communicate with the device. This functionality
also allows for the addition of vendor-specific features while
maintaining compatibility with a widely understood standard
object type.

Most of the functions in the RR core library that block
during network activity can also run in asynchronous mode.
When using the asynchronous mode, the command is started
and provided with a handler function. The current thread
will then return immediately. Once the activity has been
completed, the handler function is called using a thread
from the thread pool. Most object members can be used
asynchronously where blocking would result due to network
activity. Because of this asynchronous design, RR can inter-
act with numerous nodes simultaneously with limited usage
of computational resources. The exact number of maximum
concurrent devices is unknown, however it is estimated that
RR can interact with thousands of devices simultaneously.

III. TRANSPORTS

RR uses pluggable transports to connect nodes. The
currently supported transports are TcpTransport,
LocalTransport, and HardwareTransport. The
TcpTransport provides connection over standard
network technology using IPv4 or IPv6. Auto-discovery is
implemented using UDP. The TCP transport can be secured
using TLS to prevent eavesdropping and to verify node
identity. The TCP stream is upgraded after connection
to TLS using StartTLS to trigger the upgrade. TLS uses
X509 certificates issued by Wason Technology, LLC to
validate the identity of the nodes. These certificates are
tied to a 128-bit UUID [12]. By checking the certificate, a

client can determine that the service is the expected device.
The certificates can also be used to verify client identity
to provide strong certificate based authentication. The
TcpTransport can also create and accept WebSocket
connections. WebSockets are a new HTTP feature that
allow for persistent connections between clients and HTTP
servers. They are supported by standard web browsers and
web servers. By using the WebSocket support, standard web
browsers that support HTMLS5/JavaScript can connect to
RR nodes listening for TCP connections. Clients can then
be developed using pure JavaScript. JavaScript programs
have the advantage of being easier to deploy and highly
compatible with different platforms, including mobile
devices. Using WebSockets, it is also possible to embed
an RR service inside an ASPNET web server. ASPNET
is capable of accepting WebSockets. These WebSockets
can then be passed to the RR node to be accepted as an
incoming client connection. The use of WebSockets allows
RR to be compatible with existing web technology.

The LocalTransport is used to communicate between
nodes on the same machine. It uses operating system level
inter-process communication (IPC) methods and does not use
the loopback networking interface.

The HardwareTransport allows communication with
USB, PCle, and industrial devices. Producing devices com-
patible with RR requires licensing from Wason Technology,
LLC. Currently only USB and PCle are supported.

IV. COMPATIBILITY

RR was developed to assist in the development of a
number of complex systems involving multiple devices de-
veloped by different vendors connected to computers in a
network. The computers ran a variety of operating systems
and the drivers for these devices were available in a variety
of languages. These systems are discussed in [1]. These
systems rapidly evolved and the communication interfaces
between subsystems constantly changed. The available com-
munication technology did not have the correct combination
of compatibility, data type support, communication function
support (functions, wires, callbacks, etc.), platform support,
language compatibility, runtime type detection, and low
latency. RR was developed with the goal of maximizing
compatibility between devices whenever possible.

As discussed in the Introduction, RR is capable of run-
ning on Windows, Linux, Mac OSX, iOS, Android, and
HTML5/JavaScript on a variety of processor architectures.
RR has proven to be very effective running on the Raspberry
Pi [13] which has been used extensively as a wireless
sensor interface. It currently supports C++, C#, Java, Python,
and JavaScript programming languages. RR has also been
demonstrated running on the Arduino [14] microcontroller
family and Particle Photon wireless microcontroller [15]
using a custom bare-metal implementation, providing the op-
portunity for low cost, low power devices. The compatibility
of RR is being constantly expanded by adding support for
more operating systems and programming languages.

V. REAL-TIME CAPABILITY

The current RR library is capable of limited soft real-
time communication utilizing the “wire” element. The “wire”
element will transmit the most recent value to the connected
node. The communication can be both client-to-service and
service-to-client. Because of the design of traditional operat-
ing systems, the design of traditional networking technology,
and the asynchronous design of the current software library
it is not possible to guarantee hard real-time communication.
The thread scheduling mechanisms in use cannot guarantee
exact execution time [16] [17]. (While Windows has a “Real-
Time” thread priority, this scheduling level is not accurate
enough for control applications.) Implementations of the RR
communication system based on a different design have been
demonstrated on both xPC Target [18] and Linux PRE-
EMPT_RT [19], with the communication software running
in a hard real time context. However, both of these examples
still used Ethernet as a transport mechanism and could not
guarantee real-time communication. Future work will utilize
hard real-time networking to provide true hard real-time
communication between nodes.

VI. EXPERIMENTAL RESULTS

To test the latency of the RR communication, a simple
service was designed with a single function. This function is
essentially empty, and does not impose any delay. The func-
tion was called 100,000 times with different configurations
on both Windows 10 and Ubuntu 14.04 using high end Intel
i7 processors. LocalTransport and TcpTransport
were tested. The TcpTransport was tested using the
loopback interface and over Ethernet, and also using TLS.
The results are compared to ROS running in TCP loopback
mode using Ubuntu 14.04. The test service is based on the
examples on the ROS website [20]. The results are listed in
Table I. Selected plots are shown in Figures 1, 2, and 3.

2000 Windows 10 LocalTransport

1500 +

1000 -

Elapsed Time (us)

500 |-

0 20000 40000 60000 80000
Iteration

100000

Fig. 1. Windows 10 LocalTransport Function Call Elapsed Time
The experimental results show that the mean time for the
function call over LocalTransport is 77.1 us on Win-
dows and 136.6 ps on Ubuntu 14.04. The delay is mostly due
to the thread switching that occurs during communication.
The discrepancy between Windows and Ubuntu is due to
the difference in the time required for the thread switches.

2000 Windows 10 TcpTransport Loopback

1500 -

Elapsed Time (us)
=
S
3
S

0 20000 100000

40000 60000 80000
Iteration

Fig. 2. Windows 10 TcpTransport Loopback Function Call Elapsed Time
2000 Windows 10 TcpTransport over Ethernet
1500 .
. 3000 : N .t
g
; 1000
g
20000 40000 60000 80000 100000
Iteration
Fig. 3. Windows 10 TcpTransport Ethernet Function Call Elapsed Time

(Some outliers off scale, see Table I)

Using the TCP loopback, Ethernet, and TLS all require
more time than the LocalTransport. These results will
vary depending on the exact equipment used to run the
experiments. Results will vary depending on the equipment
utilized. Because of clock skew between computers and
processes it is not possible to directly measure the latency
of the “wire” member. The “wire” is expected to have
approximately half the latency of the function call due to the
lack of the return transmission. As can be seen in Table I
RR has roughly ten times lower latency than ROS for service
calls. DDS was not available for comparison.

VII. LICENSE

RR is distributed under a commercial license that is royalty
free for most uses. The exceptions are that certificates must
be purchased from Wason Technology, LLC for each node
to enable TLS communication, and hardware devices must
purchase licensing from Wason Technology, LLC to connect
to the driver. The software is not currently open source.
The option of open sourcing the software was considered
carefully, however it has not been released because of the
risk of ecosystem fragmentation. RR is a technology that will
be widely distributed over many devices that all must remain
inter-operable under any circumstances. Open source projects
have a tendency to be “forked” into different versions. For
many projects this is not a problem as the changes will

TABLE I
COMPARISON OF FUNCTION CALL ELAPSED TIME

Configuration Mean (us) Min (us) Max (us) o
Windows 10 LocalTransport 77.1 66.4 275.9 8.9
Windows 10 TcpTransport Loopback 113.1 102.2 683.7 10.5
Windows 10 TcpTransport with TLS Loopback 141.2 128.6 931.8 12.6
Windows 10 TcpTransport over Ethernet 417.4 243.5 3754.9 84.7
Windows 10 TcpTransport with TLS over Ethernet 492.7 306.0 5859.8 79.9
Ubuntu 14.04 LocalTransport 136.6 126.8 956.3 8.2
Ubuntu 14.04 TcpTransport Loopback 166.7 151.3 1674.1 8.8
Ubuntu 14.04 TcpTransport with TLS Loopback 278.0 264.1 1481.4 7.9
Ubuntu 14.04 TcpTransport over Ethernet 518.0 303.3 7449.7 32.6
Ubuntu 14.04 TcpTransport with TLS over Ethernet 687.3 477.4 1605.7 475
Ubuntu 14.04 ROS TCP Loopback 1848.8 1362.7 14325.544 883.2

not diminish the functionality of the project. Examples of
fragmentation can be found in the Bitcoin [21] network and
the Android [22] ecosystem. For RR, even slight changes can
severely compromise the ability of devices to communicate.
A small change can result in intermittent failures that can be
very difficult to troubleshoot and could damage the useful-
ness of the overall ecosystem. Another risk is the "Embrace,
Extend, Extinguish” strategy used in the past by Microsoft
and other companies [23]. Open sourcing the software would
unfortunately open up the technology to these threats. If a
defense against these risks can be developed the software
may be open sourced.

VIII. EXAMPLES
A. Quick Start Sample

Example 3 is a minimal Python example service that
can drive the iRobot Create using the serial control cable.
This is a subset of the more capable example service in
Example 1. It has a single function “Drive” that takes
parameters “velocity” and “radius”. This example only uses
one of the eight member types that RR offers. The example
begins by importing the RR module. It then contains the
service definition and an implementation of the “create_impl”
class. Next, the “TcpTransport” is initialized and begins
listening on port 52222. Finally, the service type and object
implementing the service object is registered as a service that
can be accessed by a client. These basic steps are similar for
all services.

Example 4 is a minimal Python example client that will
drive the robot for a short distance. It is very simple
compared to the service example. First, the module “Robo-
tRaconteur.Client” is imported. This registers the default
transports and returns the variable “RRN”, which contains
the default node. The default node is then used to connect
the service, and the “Drive” function can be accessed to drive
the robot.

Example 5 is the example client using MATLAB instead
of Python. It is very similar to the Python example.

B. iRobot Create improved with Raspberry Pi and webcams

Figure 4 is a picture of the example robot used in the
documentation for RR. It is an iRobot Create improved with
a Raspberry Pi, power converter, webcams, and a mast to

Example 3 Minimal Python service example

import RobotRaconteur as RR
RRN=RR. RobotRaconteurNode . s
import threading

import serial

import struct

2930

minimal_create_interface=
service experimental.minimal_create

object create_obj
function void Drive(intl6
end object

velocity , intl6 radius)

class create_impl(object):
def __init__(self, port):
self._lock=threading.Lock ()
self. _serial=serial.Serial (port=port,baudrate
=57600)
dat=struct.pack(”>4B”,128,132,150, 0)
self. _serial . write(dat)
def Drive(self, velocity,
with self. _lock:
dat=struct.pack(”>B2h” ,137,velocity ,radius)
self. _serial.write(dat)

radius):

#Create and register a transport
t=RR. TcpTransport ()
t.StartServer (52222)

RRN. RegisterTransport(t)

#Register the service type
RRN. RegisterServiceType (minimal_create_interface)

create_inst=create_impl (”/dev/ttyUSBO0”)
#Register the service
RRN. RegisterService ("Create” ,”experimental . minimal_create .

create_obj”,create_inst)

#Wait for program exit to quit
raw_input(”Press_enter_to_.quit”)

Example 4 Minimal Python client example

from RobotRaconteur.Client import =
import time

#RRN is imported from RobotRaconteur. Client

#Connect to the service.

obj=RRN. ConnectService (’rr+tcp ://localhost:52222/?service=
Create ’)

#The ”Create” object reference
#Drive for a bit
obj.Drive(100,5000)
time . sleep (1)

obj.Drive (0,5000)

is now available for use

Example 5 Minimal MATLAB client example

o=RobotRaconteur.Connect(’rr+tcp://localhost:52222/?
service=Create ’);

o.Drive(int16(100),int16(5000));

pause (1)

o.Drive(intl6(0),intl6(0));

Fig. 4. iRobot Create with Raspberry Pi and webcams

hold the cameras and electronics. Examples 1 and 2 are the
service definitions of the services used to access the on-board
devices.

C. Microassembly System

The Multi-probe Microassembly Testbed [24] was an
experimental system designed to manipulate parts that were
25 pm thick and had lengths and widths between 200
um and 1500 um. The system had 24 manipulation actuators,
four microscope cameras, three camera actuators, and three
illumination systems. These devices were controlled through
four PCs and several microcontrollers. The development of
this complex, constantly changing system was the primary
motivation for the development of RR as the existing com-
munication technologies were not flexible enough to keep
up with the demands of the communication requirements
while still being easy to rapidly modify as experiments
progressed. Figure 5 shows the microassembly testbed work
area, while Figure 6 shows the communication layout of the
system. RR was critical to the success of the microassembly
research as it significantly reduced the development time
for system modifications yet allowed for high performance
communication between system components.

D. Smart Conference Room

The Smart Conference Room [25] is a functional testbed
for the development of advanced lighting and building con-
trol algorithms. It is located at the Smart Lighting En-
gineering Research Center (ERC), Rensselaer Polytechnic
Institute (RPI), Troy, NY. Figure 7 shows the room with
color-tunable LED lights. Figure 8 is a picture of one of the
color sensors. The color sensor is a Raspberry Pi with an
I>C color sensor. The Raspberry Pi runs a Robot Raconteur
service that provides access to the color sensor data.

Fig. 5. Multi-probe Microassembly Testbed

XPC Target Microassembly

Primary
Motors

jo13u0g uonoW

-
1
1
1
1
1
1
1
'
1
1
1
1

“m

)

3

@

o

g

8
anajuodey J0qoy
IN31U02eY 1000y |
1najuodey 10qoy

1
1
'
1
1
I
1
1
L

1N31U0eY 10q0Y 1|

1 ddL1984eL JdX

Robot Camera
Host

1 - 1

] Microassembly C# ! Auxiliary

[} Host \ Motors

H i

\ 1

1 1
1 1
\ 1
! MATLAB :
, i
1 1
1 1
\ 1

Host Computer

Camera
Computer

Fig. 6.

Multi-probe Microassembly Testbed Communication Layout

E. Baxter on Wheels

The “Baxter on Wheels” [26] (BOW) (formerly the Jam-
ster) is a ReThink Robotics Baxter combined with an electric
wheelchair to provide mobility (Figure 9). It has been used
in combination with a Jamboxx controller to allow disabled
persons to operate the robot. It is developed by the Center for
Automation Technologies and Systems (CATS), Rensselaer
Polytechnic Institute, Troy, NY.

IX. CONCLUSION

RR version 0.8 is the first “beta” version ready for
commercial use. It uses an “Augmented Object Oriented”
data model that provides excellent flexibility and function-
ality. Different transports can be used to provide connection
between nodes using different technologies. TLS provides
network security when using the TcpTransport. RR is
constantly being improved. New features being developed
include real-time support over PCI express, a transport based
on the “cloud” that will use the RR servers to help create
connections, and additional language bindings. A plugin for
the Gazebo robot simulator [27] is being developed to allow
control of the simulator using a friendly object oriented
interface. This plugin will be available on the RR website
when it has been completed.

Fig.

Fig. 7. Smart Conference Room, Smart Lighting ERC [25]

8. Smart Conference Room color sensor, Smart Lighting ERC [25]

Creating a standards committee and industrial consortium
to further the development of RR is being investigated.
Please contact the author for more information on these
organizations.

[1]

[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]

[10]

REFERENCES

J. D. Wason and J. T. Wen, “Robot raconteur: A communication
architecture and library for robotic and automation systems,” in /EEE
Conference on Automation Science and Engineering (CASE), 2011,
pp. 761-766.

A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for
the Java TM system,” Computing, vol. 9, no. 4, pp. 265-290, 1996.
S. Vinoski, “Distributed object computing with CORBA,” C++ Re-
port, vol. 5, no. 6, pp. 32-38, 1993.

R. H. Arpaci-Dusseau, Introduction to Distributed Systems. Arpaci-
Dusseau Books, 2014.

J. D. Wason, “System and method for implementing augmented
object members for remote procedure call,” U.S. patent application
US20 150081 774A1, 2013.

The Websocket Protocol, IETF Std. RFC 6455, 2011.

Boost C++ Libraries. [Online]. Available: http://www.boost.org/

M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in [International Conference on Robotics and
Automation, 2009.

J. D. Wason, Introduction to Robot Raconteur using Python,
Wason Technology, LLC, October 2014. [Online]. Available:
https://robotraconteur.com/documentation

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” IEEE Internet computing, vol. 6, no. 2, p. 86, 2002.

Fig. 9. Baxter on Wheels, Center for Automation Technologies and Systems

[26]

(11]

(12]

[13]
[14]
[15]
[16]

(17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. N. Scott McLean and K. Williams, Microsoft .NET Remoting.
Microsoft Press, 2002.

Information technology - Procedures for the operation of object
identifier registration authorities: Generation of universally unique
identifiers and their use in object identifiers, ITU Std. X.667, October
2012.

Raspberry pi foundation. [Online]. Available:
https://www.raspberrypi.org/

Arduino AVR Prototyping Platform. [Online]. Available:
http://www.arduino.cc/en/

Particle - build your interenet of things. [Online]. Available:

http://www.particle.io
D. Solomon and M. Russinovich, Windows Internals, 5th ed. Microsoft
Press, 2009, ch. 5, pp. 391-444.

L. Trung. (2012, April) Comparing real-time scheduling
on the Linux kernel and an RTOS. embedded.com.
[Online]. Available: http://www.embedded.com/design/operating-

systems/4371651/Comparing-the-real-time-scheduling-policies-of-the-
Linux-kernel-and-an-RTOS-

Simulink Real-Time. [Online]. Available:
http://www.mathworks.com/products/simulink-real-time/
CONFIG PREEMPT RT Patch. [Online]. Available:

https://rt.wiki.kernel.org/index.php/CONFIG_PREEMPT _RT _Patch
ROS.org Writing a Simple Service and Client (C++). [Online]. Avail-
able: http://wiki.ros.org/ROS/Tutorials/WritingServiceClient(c++)

D. Floyd, “The hard fork: Will Bitcoin XT take?” Nasdaq, August
2015. [Online]. Available: http://www.nasdaq.com/article/the-hard-
fork-will-bitcoin-xt-take-cm512449

N. Swanner, “This is what android fragmentation looks like
in 2015 The Next Web, August 2015. [Online]. Avail-
able: http://thenextweb.com/insider/2015/08/05/this-is-what-android-
fragmentation-looks-like-in-2015/

“Deadly embrace,” The Economist, May 2000. [Online]. Available:
http://www.economist.com/node/298112

J. D. Wason, “Visually-guided multi-probe microassembly of spatial
microelectromechanical systems,” Ph.D. dissertation, Rensselaer Poly-
technic Institue, Troy, NY, 2011.

S. Afshari, S. Mishra, A. Julius, F. Lizarralde, J. D. Wason, and
J. T. Wen, “Modeling and control of color tunable lighting systems,”
Elsevier Energy and Buildings, vol. 68, pp. 242-253, 2014.

A. Cunningham, W. Keddy-Hector, U. Sinha, D. Whalen, D. Kruse,
J. Braasch, and J. T. Wen, “Jamster: A mobile dual-arm assistive
robot with jamboxx control,” in IEEE International Conference on
Automation Science and Engineering (CASE), 2014, pp. 509-514.

N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, vol. 3, 2004, pp. 2149-2154.

