
Robot Raconteur®: Updates on an Open Source Interoperable
Middleware for Robotics

John D. Wason and John T. Wen

Abstract— Robot Raconteur® (RR) is a powerful communi-
cation framework for robotics, automation, building control,
and the “Internet of Things”. RR provides unique plug-and-
play, standardized, augmented object-oriented capabilities that
greatly accelerate the development of systems and provide
stable production performance. The project became open-
source in 2018, and is available on GitHub under the Apache 2.0
license. This paper provides updates on the development of RR,
the standardization of RR, the development of an ecosystem of
standardized drivers, and example use cases for the framework.
The RR Core library is approaching a 1.0 release with ROS
Quality Level 2.

I. INTRODUCTION

Robot Raconteur® (RR) is a powerful communication
framework for robotics, automation, building control, and
the “Internet of Things”. RR provides a combination of
features that make it uniquely capable of meeting the needs
of advanced automation systems as the scale and complexity
of these systems increases. RR began as a simple project in
2010, and has matured into a flexible, performant, interopera-
ble, and user-friendly suite of components. The core libraries
were open-sourced in 2018 under the Apache 2.0 license to
make the technology more accessible and provide confidence
to users. RR has been covered in two previous CASE
papers, in 2011 [1] and 2016 [2]. A patent has also been
issued [3]. This paper presents updates on the development
of RR, the standardization of RR, the development of an
ecosystem of standardized drivers, and example use cases
for the framework.

The development of RR was motivated by the difficulty of
developing advanced automation and robotics systems. These
systems use components that differ in manufacturer, plat-
form, interface, and application programming interface (API)
language. The components in these systems also typically
have far more complex software interfaces than traditional
automation components, making traditional solutions such

Wason Technology, LLC, wason@wasontech.com
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic

Institute, wenj@rpi.edu
Funding for this research was provided in part by the ARM (Advanced

Robotics for Manufacturing) Institute. The ARM Institute is sponsored by
the Office of the Secretary of Defense under Agreement Number W911NF-
17-3-0004. Views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Office of the Secretary of Defense or
the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation herein.

This work was supported in part by the New York State Empire State
Development Division of Science, Technology and Innovation (NYSTAR)
under contract C160142.

as EtherCAT [4], Ethernet/IP [5], ModBus [6], OPC/UA [7],
or digital/analog IO inadequate. The initial design of RR
was inspired by object-oriented remote procedure call (RPC)
frameworks such as Java RMI [8] and .NET Remoting [9],
but designed to be straightforward and plug-and-play with
common engineering software like MATLAB [10] and later
LabView [11]. Over time and with the experience of dozens
of projects, the capabilities of RR have grown into a mature
design with features and standards that are unique. While
RR is attempting to solve similar problems to the more
common ROS [12] and ROS 2 [13], the solutions provided
are quite different. (RR is a client-service RPC framework,
while ROS and ROS 2 are Publish-Subscribe frameworks.)
User experience has been that RR is easier to use and allows
for more capable interfaces to be developed. More details on
the comparison between ROS and RR can be found on the
RR GitHub website [14].

A directory of links to available Robot Raconteur software
and projects has been created [15]. Refer to the directory for
URL links to the repositories listed in this paper.

At the time of this writing, the current RR Core release
version is 0.16.0.

II. ROBOT RACONTEUR OVERVIEW

Robot Raconteur is an augmented object-oriented mid-
dleware inspired by remote procedure call (RPC) concepts
but expanded to realize the needs of advanced robotics
applications. The basic goal of RPC is to provide access
to remote software functions, objects, members, and data as
if they were local. RPC technologies are common, but most
focus on business applications and have not been designed
for robotics. The performance, semantics, reliability, and data
types are not designed for handling the needs of advanced
robotics applications, which are typically real-time, low
latency, and communicate numeric data.

RR is a client-service communication framework. The
service contains objects that implement the functionality of
the service. For instance, a robot would be represented by one
or more objects, with members that command the motion and
provide state feedback. The client connects to the service,
and creates “object references” (sometimes called “proxies”)
that have the same members as the service objects. The
middleware transparently connects the client object reference
and service. See [1], [2], and the project documentation for
more details on the RPC implementation.

A. Service Definitions and Plug-and-Play

RR uses “service definitions” to define the objects, mem-
bers, data types, exceptions, and constants provided by
services. Service definitions are a form of interface definition
language (IDL) [16]. Service definitions are transmitted to
the client while connecting to a service. This allows the
client to automatically generate object references in scripting
languages such as Python, MATLAB, and LabView. Services
can also be standardized to allow clients to communicate
with any service that supports a specified service definition
(See Section IV-B). This method would typically be used for
production scenarios that need to interoperate with classes of
devices. These two methods, runtime generated client proxies
and standardized service definitions, provide plug-and-play
capability [17].

B. Objects

RR objects support member types “property”, “func-
tion”,“event”, “objref”, “pipe”, “callback”, “wire”, and
“memory”. This is referred to as “augmented object-
oriented”, The “wire”, “pipe”, and “memory” members are
designed to handle streaming, real-time, and shared-memory,
respectively. These members are unique to RR. See [2] and
the documentation for more details on object members.

C. Data Types

RR supports five primary categories of data types: prim-
itives, structures, pods, containers, and namedarrays. Prim-
itives are numeric scalars, numeric arrays, numeric multi-
dimarrays, and strings. Supported data types for numeric
types are one, two, four byte signed and unsigned integers,
four, eight byte floating point reals, booleans, and eight,
sixteen byte floating point complex numbers. See Section
III-B for more information on the new boolean and complex
number features. Structures are composite types containing
one or more named fields. Containers represent lists or maps
of other data types. Pods and namedarrays are composite
types like structures, but store the information differently in
memory. See Section III-C for more information on the new
composite data type features. See the primary documentation
for a full overview of data types.

D. Exceptions and Error Handling

RR has built-in exception transmission for property, func-
tion, objref, callback, and memory member types. If an ex-
ception is thrown during the request, it is passed back to the
caller and rethrown. This removes the need for the developer
to implement error transmission logic. Custom exceptions
can be defined in service definitions using the exception
keyword. Exception transmission is not available for the pipe
and wire member since these are handling streaming data.

E. Transports

RR uses “transports” to pass messages between client
and service nodes. These transports typically serialize the
message to binary form. Currently supported transports use

TCP/IP (rr+tcp), UNIX sockets (rr+local), intrapro-
cess communication (rr+intra), USB (rr+usb), or Blue-
tooth (rr+bluetooth). Several transports are under devel-
opment including QUIC [18] (rr+quic), PCIe (rr+pci),
and Cloud using WebRTC [19] (rr+cloud). The TCP/IP
transport can operate in several modes, including support
for WebSockets [20] and encryption using TLS [21]. The
use of WebSockets allows RR to communicate with existing
Web and Cloud infrastructure, such as Web Browsers and
ASP.NET [22] web servers.

F. Discovery and Subscriptions

RR provides discovery of services on the local system
or over the network. On the local system special files are
used, while on the network multicast UDP packets are used.
Subscriptions utilize this discovery capability to automati-
cally connect to services and manage the client connection
lifecycle. See Section III-A.

G. Implementations

RR is a framework, with multiple software and hard-
ware components providing implementations. The three pri-
mary software implementations are “Robot Raconteur Core”,
“Robot Raconteur Lite”, and “Robot Raconteur Web”.

RR Core is the primary software library, and implements
all of the major framework features. It is written in C++
and uses the Boost ASIO [23] library. RR Core is de-
signed for application level programming, and makes some
performance trade-offs in favor of usability and dynamic
type handling, although it is still performant enough for
most soft real-time use cases (See Section VII). RR Core
provides language wrappers for C++, Python, C#, Java, and
MATLAB. A commercial RR LabView Add-on is available
for licensing from Wason Technology. RR Core supports
Windows, Linux, MacOS, iOS, Android, and FreeBSD.
There is also a new implementation of RR Core for Pyodide
[24], a Python implementation that runs in WebAssembly
within a web browser. Future support for Rust, Go, Lua,
QNX, and VxWorks are planned. Robot Raconteur Core is
available in a variety of package managers. It is also included
in the ROS Noetic [12] and ROS Humble [13] repositories.

RR Lite is a pure ANSI C implementation that is under
development intended for real-time, embedded, and, in the
future, safety-critical applications. While RR Core favors
usability and dynamicism, RR Lite is designed purely for
performance and portability. This implementation is currently
under development.

RR Web is a C# implementation of the RR framework, and
is used for applications, web servers, and within browsers.
C# applications can use the library normally, as any other
library. Web servers such as the ASP.NET [22] server use
the library by accepting WebSockets, and then passing the
connected WebSocket to the RR node running inside RR Web
for processing. RR Web can also be transpiled to JavaScript
to be run inside a Web Browser.

H. Version 1.0 Release

The RR Core library is approaching a 1.0 release with ROS
Quality Level 2 [25]. The ROS quality levels are designed to
provide a consistent way to judge the development maturity
and quality of an open-source package. Quality Level 2 is the
second highest quality level, defined as “These are packages
which need to be solidly developed and might be used in
production environments, but are not strictly required, or
are commonly replaced by custom solutions. This can also
include packages which are not yet up to ’Level 1’ but intend
to be in the future [25]”. RR will be progressed to ROS
Quality Level 1 as soon as possible after achieving ROS
Quality Level 2. The 1.0 release is expected to be complete
in mid to late 2023.

III. NEW FRAMEWORK CAPABILITIES

A. Subscriptions

Subscriptions were added in RR version 0.9.0, providing
a capability that combines discovery with client connec-
tion lifecycle management. Normal discovery is a discrete
operation, where the user requests a list of nodes or ser-
vices that match the criteria specified. Subscriptions instead
continuously monitor available nodes and services. If the
critea match, the subscription will automatically create client
connections to services. “Wire” and “pipe” subscriptions
can also be created. These subscriptions will automatically
connect to wires and pipes of connected services, and provide
an aggregated representation of the received data. (Wire
and pipe subscriptions are similar to pub-sub systems.) The
connected client objects can be accessed, and used as nor-
mal clients. Using subscriptions removes the need to know
the exact URL of a service, and simplifies the connection
lifecycle management since it is no longer the responsibility
of the library user.

Subscriptions can be created in three operational modes:
ServiceInfo2 Subscription

Subscribe for ServiceInfo2 discovery informa-
tion. This mode returns discovery information and
does not create connections.

Service By Type Subscription
Subscribe to services by the root object
type, and a set of filter criteria. This
mode looks for a specific object type, for
instance com.robotraconteur.robotics
.robot.Robot, and connects to all services that
have this service type. The criteria for connection
can be modified using a filter to prevent connecting
to unintended services.

Service By URL Subscription
Subscribe to a service using a URL. This operates
using the same URL that would be used for a
normal client connection, but provides automatic
lifecycle management.

B. Complex Numbers and Booleans

New primitive types for booleans and complex numbers
were added in RR version 0.9.0. csingle represents an

eight byte complex number, and cdouble represents a
sixteen byte complex number. bool is a single byte rep-
resentation of a boolean.

C. Pods and Namedarrays

Pods and namedarrays were introduced in RR version
0.9.0. These new types are composite value types that
provide a different representation of data compared to the
standard structure type. With the structure data type, every
field is a reference (or pointer) to another piece of data
stored separately from the structure. This allows for the
structure to hold any valid data type, with arbitrary size.
For performance and semantic reasons, this is often not the
ideal representation of data. “Plain old data” [26] is a term
for passive structures that contain only data, and in C++
and C are special because all of the data contents are stored
within the structure itself1. Because all of the data is local
to the structure, an array of pods will have its memory in
the same contiguous space, instead of having references to
other data stored separate in memory. Pods have significant
advantages for real-time and constrained systems that are not
allowed to allocate or manage memory. They are also more
efficient for storing large amounts of simple data, since only
one allocation is required for the contiguous space instead
of many smaller allocations.

Namedarrays take the pod concept once step further, and
consider data that can be represented either as an array or a
composite type. Consider a vector, that can be represented as
a 3x1 array, or as a composite type with fields x, y, and z.
Both representations are valid, and are used interchangeably.
A namedarray is a union type that formalizes this concept.
The memory is stored as a numeric array, but can also be
accessed using the composite type fields. This is a very
efficient representation, since all of the data is stored in a
simple array, and can also be transmitted as a simple array
without further processing.

D. Function Generators

Function generators were introduced in RR version 0.9.0.
Function generators are modeled after Python generators
[27], and allow a function to return a simple “coroutine”.
The coroutine has three methods: Next(), Close(), and
Abort(). The client calls Next() repeatedly until the
generator is closed, either by the client or the service.
Next() can optionally send and/or return a parameter.

Generators are primarily used for two scenarios: trans-
ferring large amounts of data, or executing a long running
operation (action). RR by default has a limit on the maximum
message size, so a generator can be used to break a large
amount of data into smaller transfers. RR by default has
a timeout for a function call, typically around 10 - 15
seconds. When a generator is used as an action, the client
can repeatedly call Next() to receive periodic updates, and
confirm to the service that the client is still functioning.

1C pods may contain passive pointers, but RR usage assumes only data.

E. Wire Peek and Poke

Wire “peek” and “poke” functionality was added in RR
version 0.9.0. Often times, a client needs to read or write
the value stored in a wire, but does not require real-time
streaming updates. The “peek” and “poke” operations allow
the client to use a request to read or write the wire value
without creating a streaming connection.

F. Intra Transport

The Intra Transport was added in RR Core version 0.9.3.
This provides an efficient transport for nodes running in the
same process (intra-process communication).

G. Diagnostic Logging and Taps

Beginning in version 0.9.3, RR Core has had extensive di-
agnostic capabilities implemented. Detailed logging provides
information on the internal operation of RR for debugging
and auditing purposes. Taps allow for every message passing
to and from a node to be intercepted, cloned, filtered, and
logged by a companion diagnostic service.

IV. STANDARDIZATION

A. Framework Standards

Precise, well defined standards are critical for interoper-
ability in communication software. A set of standards are
being developed to formalize the following aspects of the
RR framework:

• Framework Architecture
• Service Definitions
• Object Protocol and Value Types
• Message Structure and Serialization
• Transports
• Discovery
The draft versions of these standards are available on

GitHub.

B. Standard Service Types

As discussed in Section II-A, “service definitions” define
objects, members, data types, exceptions, and constants
provided by services. For older projects, a new service
definition was created for each service. These services were
often device drivers, that allowed for a RR client to interact
with the device. Because these service definitions were all
bespoke, it was not possible for a client to use a different
device without modifying the client, even if the device
provided similar functionality. As part of the ARM project
“Robot Raconteur (RR): An Interoperable Middleware for
Robotics” [28], standard service definitions were created that
represented classes of devices and allow for interoperability
between different devices. The developed service definitions
are available on GitHub. Currently the published “Group 1”
has 45 service definitions, 41 object types, 162 structures,
71 namedarrays, and 5 pods defined.

Example 1 shows the abridged service
definition entry for the “standard robot” type,
com.robotraconteur.robotics.robot.Robot.
This type specifies multiple command modes and metadata.

The metadata members (not shown in the example) contains
generic information about the device, and robot specific
information such as kinematics. The interface allows for
robots to be used interoperably, with the same client able
to control multiple robots using the same software without
modification (See Section VIII-A).

RR has a commitment to long term compatibility. Indus-
trial equipment can operate unchanged for decades, com-
pared to software that can change several times a year.
RR is designed to provide long term stability while also
designing in enough flexibility to unobtrusively evolve over
time. The framework standards and standard service types
are important pieces of the strategy to maintain long-term
compatibility.

V. STANDARDIZED DRIVERS

Standardized service definitions have been developed to
allow for interoperability between devices, as discussed in
Section IV-B. Device drivers developed prior to the stan-
dardized service types all used incompatible service types,
and were not interoperable. As part of the ARM project
“Robot Raconteur (RR): An Interoperable Middleware for
Robotics” [28] and following projects, standardized drivers
have been developed that implement interoperability. These
standard drivers were used for the demonstration presented
in Section VIII-A.

The following subsections contain lists of the drivers that
are available. See the Robot Raconteur directory [15] for
direct links to each driver2.

A. Standard Robot Drivers
Standard robot drivers have been developed for the fol-

lowing robots:
• Rethink Robotics Sawyer Robot
• Rethink Robotics Baxter Robot
• Universal Robots CB2, CB3, and e-Series
• ABB IRC5 6-axis Robots
• Gazebo Simulated Robots

B. Standard Camera Drivers
A standard camera driver has been developed using

OpenCV camera capturing. OpenCV supports a wide range
of camera types, including standard USB webcams and many
embedded cameras such as the Raspberry Pi camera.

Drivers for the Kinect Azure and Intel RealSense have also
been developed. These devices implement multiple services
to represent the different capabilities provided by the sensors.

A driver for Cognex object recognition cameras has been
developed. Unlike the other camera drivers the Cognex is
a logical camera. It returns the detected coordinates of the
detected objects instead of an image.

C. Standard Input Drivers
Drivers for standard USB joysticks/gamepads have been

developed. A Linux only driver for the 3Dconnexion Space-
Mouse has been developed.

2Citations for specific products have been omitted for space. Please see
the individual projects for product citations.

Example 1 Abridged standard Robot service definition entry
object Robot

implements Device
... (abridged)
property DeviceInfo device_info [readonly,nolock]
property RobotInfo robot_info [readonly,nolock]
property RobotCommandMode command_mode [nolockread]
property RobotOperationalMode operational_mode [readonly, nolock]
property RobotControllerState controller_state [readonly, nolock]
... (abridged)
function void jog_joint(double[] joint_velocity, double timeout, bool wait)
function TrajectoryStatus{generator} execute_trajectory(JointTrajectory trajectory)
wire RobotState robot_state [readonly,nolock]
wire AdvancedRobotState advanced_robot_state [readonly,nolock]
... (abridged)
wire RobotJointCommand position_command [writeonly]
... (abridged)

end

VI. ROBOT MOTION PROGRAMS

The standard robot drivers discussed in Section V use
external control interfaces to the robot. These interfaces
allow for the driver to stream setpoint commands to the
robot in real-time. Examples of this type of interface include
EGM on ABB robots and RTDE on UR robots. While this
is a convenient and relatively simple way for the driver to
command the robot, the interface tends to have very poor
performance in terms of response times and accuracy track-
ing a signal. When operating using the internal controller,
robots use ”motion primitive” commands to move the robot
[29]. These commands typically consist of some combination
of “MoveJ”, “MoveL”, and ”MoveC” [29]. These commands
interpolate in joint space, linear Cartesian space, or circular
Cartesian space respectively. The setpoints for the motions
are specified in joint or Cartesian coordinates in various com-
binations depending on the vendor. Other parameters such as
motion velocity and blending radius between segments can
be specified, with the exact parameters depending on the
vendor. “Motion Program” drivers are designed to command
robots using their built in motion controller using a sequence
of motion primitive commands.

Two ARM funded projects, “Optimized Robot Motion
Program for Tracking Complex Geometric Paths” [30]
and “Convergent Manufacturing using Multiple Industrial
Robots” [31] focus on using motion programs to command
the robots. These applications require high precision motion
of the robots that is difficult to achieve using the streaming
command interfaces and do not require real-time correction
using sensors.

Figure 1 shows the turbine blade testbed used to demon-
strate the successful development of optimization algo-
rithms for multi-robot trajectory. As part of this project,
the abb robotraconteur driver hmp was developed.
The name is short for “ABB Robot Raconteur Driver Hybrid
Motion Program”. This driver implements all the function-
ality of the standard robot drivers, but adds the additional
capability of being able to be commanded using motion
programs. The driver is able to switch the robot between

Fig. 1: Motion program turbine blade multi-robot testbed
[30]

Fig. 2: Robotic WAAM testbed for Convergent Manufactur-
ing [31]

ABB EGM streaming commands and motion programs that
execute using ABB RAPID commands. The motion program
types are being developed into standardized service defini-
tions that will be frozen in the future.

The ongoing “Convergent Manufacturing using Multiple
Industrial Robots” ARM project focuses on developing a
framework based on Robot Raconteur for convergent man-
ufacturing. The objective is to use the standardized driver
service types and the standards track motion program ser-

vice types to develop an interopable, rapidly reconfigurable
architecture. The testbed for this project implements robotic
wire arc additive manufacturing (WAAM). Figure 2 shows a
photo of the testbed. It consists of several major components.
The robot system includes two Motoman robots (MA2010
and MH12), a Motoman positioner (P500), and a DX200
controller. A Fronius TPS 500i is used for the welder.
The primary sensor is an Artec Spider laser scanner. An
OptiTrack motion tracker system is used for logging and
calibration.

During the convergent manufacturing project, drivers will
be developed for all the major components. A hybrid motion
program driver is being developed for the Motoman system
using MotoPlus, an SDK allowing for C based tasks to be
executed on the DX200 controller. A driver for the Artec
Scanner is also under development and is being open-sourced
on GitHub.

VII. PERFORMANCE

Basic performance measurements were captured for the
Round Trip Time (RTT) for sending packets between nodes
for Robot Raconteur, ROS 2 Iron, and ROS 1 Noetic. Robot
Raconteur has several features that the ROS versions do
not that provide usability improvements but can affect per-
formance. These features include an asynchronous message
serialization, and and highly parallel multi-threading. The
experimental data was captured with these features enabled
and disabled to demonstrate the effect on performance.
The full results of these tests can be found in the GitHub
repository [32].

Tables I, II, and III show results for tests with different
configurations. The tests were done on identical Intel based
computers. Each computer has an Intel i5-6500 CPU, 16 GB
of RAM, and a Realtek RTL8111HSD-CG Gigabit Ethernet
LAN network adapter. A Netgear GS108 switch was used to
connect the devices. Ubuntu 22.04 was used for Linux, with
Windows 11 Professional used for Windows.

Overall the results of the testing do not a give a decisive
answer into which technology is “faster”, since the results
were inconsistent. Because the RTT is so small (often less
than 100 µs), the effect of the hardware and the operating
system often more important than the effect of the software
being measured. RR Core is roughly in the same class as
ROS and ROS 2, and for almost all use cases the latency
differences will not have any tangible effect. For situations
where hard real-time latency is important, the RR Lite library
that is currently under development should be used instead
of RR Core.

VIII. EXAMPLES

A. Interoperable Box Packing using Robot Raconteur

The ARM project “Robot Raconteur (RR): An Interoper-
able Middleware for Robotics” [28] focused on the develop-
ment of interoperable drivers for RR. The resulting standard
service definitions and drivers are discussed in Section IV-B
and Section V. The demonstration for the project involved
multiple robots in the same workspace picking and placing

TABLE I: Round Trip Time (RTT) for 64 Byte Payload
(microseconds)

Linux Loopback
Middleware Mean Std Dev Min Max
RR Default 128.46 269.15 87.97 14247.54
RR No Asyncio 85.92 38.14 74.13 3662.17
RR No Thread 71.15 22.68 63.28 1452.80
ROS 2 66.09 38.10 49.46 733.59
ROS Noetic 74.62 45.39 58.59 4082.73

Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 841.13 87.52 439.67 3247.55
RR No Asyncio 541.62 307.41 153.50 3804.10
RR No Thread 804.67 109.46 416.86 4403.11
ROS 2 294.13 6786.54 103.73 678719.55
ROS Noetic 1042.72 12406.51 81.20 208680.04

Windows to Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 1525.53 223.12 517.50 2083.00
RR No Asyncio 1534.86 182.25 809.30 3325.00
RR No Thread 1429.01 288.50 839.60 6802.60
ROS 2 995.30 113.42 522.50 1527.90

TABLE II: Round Trip Time (RTT) for 1 KB Payload
(microseconds)

Linux Loopback
Middleware Mean Std Dev Min Max
RR Default 137.53 187.34 95.17 4531.75
RR No Asyncio 195.11 146.71 75.72 1538.84
RR No Thread 70.34 13.04 67.74 321.31
ROS 2 114.60 120.00 55.80 829.78
ROS Noetic 43261.09 5642.37 81.64 48032.40

Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 841.13 87.52 439.67 3247.55
RR No Asyncio 541.62 307.41 153.50 3804.10
RR No Thread 804.67 109.46 416.86 4403.11
ROS 2 294.13 6786.54 103.73 678719.55
ROS Noetic 1042.72 12406.51 81.20 208680.04

Windows to Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 1439.32 194.66 922.10 1908.20
RR No Asyncio 1361.66 218.57 861.70 2595.60
RR No Thread 1427.00 382.87 873.00 6760.30
ROS 2 1053.82 120.68 640.60 1466.20

TABLE III: Round Trip Time (RTT) for 1 MB Payload
(microseconds)

Linux Loopback
Middleware Mean Std Dev Min Max
RR Default 1134.54 452.19 620.33 3160.29
RR No Asyncio 2151.53 2242.68 905.25 11585.46
RR No Thread 2213.07 1404.46 877.72 9725.43
ROS 2 1461.70 2352.81 919.96 22756.96
ROS Noetic 4340.28 1301.32 3978.75 13953.20

Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 18389.83 360.15 18213.07 20523.54
RR No Asyncio 18999.78 590.55 18507.99 21618.37
RR No Thread 19257.81 4321.46 18471.42 50079.31
ROS 2 21925.65 3862.22 19318.12 30736.35
ROS Noetic 21799.66 919.67 21447.52 30439.87

Windows to Linux Ethernet
Middleware Mean Std Dev Min Max
RR Default 19156.84 2844.64 18460.30 47363.10
RR No Asyncio 20988.33 6546.25 19052.10 55396.80
RR No Thread 19631.82 3358.45 19047.50 52940.20
ROS 2 21792.21 3442.51 19530.90 34633.60

Fig. 3: Robot Raconteur Box Packing Example [17]

Fig. 4: Open-Source Teach Pendant Prototype [17]

objects into trays passing on a conveyor. These robots used
RR drivers implementing the standard robot type. The client
for each robot was identical, allowing for the robots to
be switched into different positions without changing the
client software, other than calibration information. A real-
time quadratic programming collision avoidance algorithm
was used to prevent the robots from impacting each other.
For this example system, an ABB IRB1200, an Universal
Robtots UR5, and a Rethink Sawyer were used. A Cognex
camera was used for sensing the location of the trays. Figure
3 shows a picture of the system used for this demonstration.
A video is also available [33].

B. Open Source Teach Pendant

The ARM project “Open Source Teach Pendant Program-
ming Environment” [34] focused on the development of an
Open-Source Teach Pendant based on RR and the stan-
dard device drivers. The Open-Source Teach Pendant uses
a restricted Python dialect called PyRI (Python Restricted
Industrial) and Blockly for industrial programming. The
objective of the teach pendant is to provide a high-level
user interface and programming environment to advanced
open-source technologies that are currently only accessible
to highly skilled developers. Figure 4 shows a picture of the
prototype physical teach pendant. A video is also available
[35].

C. Assistive Robotics

RR was used to integrate an assistive robotic system
[36]. A Rethink Baxter was mounted on a wheelchair, and
configured to complete daily activities. The user commanded
the robot using either a sip-puff device or a joystick. Figure
5 shows a picture of the assistive robot setup.

Fig. 5: Assistive robot system integrated using Robot Racon-
teur [36]

Fig. 6: Human guided robot system integrated using Robot
Raconteur [37]

D. Human Guided Dual-Arm Manipulation

RR was used to integrate a system demonstrating teler-
obotic control of a dual-arm robot using gestures to control
the robot [37]. A Microsoft Kinect was used to sense the
hand gestures of the operator. An MotoMan SDA 10 robot
with ATI force sensors tracked the commands. Figure 6
shows a picture of the human guided robot system.

E. Algorithm Development for Space Manipulation

RR was used to integrate testbeds for the development
of algorithms to handle massive objects in space using
flexible joint manipulators [38] [39]. These experiments used
Rethink Baxter robots, cameras, and custom hardware using
Raspberry Pi embedded computers.

F. Robot Raconteur Arduino Uno Demonstration

A minimal service was implemented on an Arduino Uno
using an Ethernet Shield for communication. The Arduino
Uno has very limited resources at 32 KB of flash storage and
2 KB of RAM. A custom RR implementation was devised
that implemented a minimal service representative of a light
dimmer switch. The service is capable of turning an LED
on, off, and modifying its PWM intensity. The minimal
service is fully featured: It supports plug-and-play client
connections, standard RR messages, incoming WebSocket
connections, and service discovery. This demonstration is
important because it shows that even though RR is a powerful
and at times complex system, it is still simple and flexible
enough to be implemented on very limited hardware.

IX. CONCLUSION

Robot Raconteur is a powerful, flexible, and user friendly
middleware for robotics and automation. This paper has

discussed the development of the framework, the expansion
of the RR ecosystem, and presented example applications
using RR. Future work on Robot Raconteur will include:

• Version 1.0 release of Robot Raconteur Core with ROS
Quality Level 2

• Completion of Robot Raconteur Lite and Robot Racon-
teur Web

• Continuing development of Robot Raconteur drivers
and ecosystem

• Improved documentation and training materials
• Expansion of supported platforms and programming

languages
• Publicizing and marketing of framework to gain more

users
• Hard real-time support

REFERENCES

[1] J. D. Wason and J. T. Wen, “Robot raconteur: A communication
architecture and library for robotic and automation systems,” in IEEE
Conference on Automation Science and Engineering (CASE), 2011,
pp. 761–766.

[2] J. D. Wason, “Robot raconteur® version 0.8: An updated communica-
tion system for robotics, automation, building control, and the internet
of things,” in IEEE International Conference on Automation Science
and Engineering (CASE), 2016, pp. 595–602.

[3] “System and method for implementing augmented object members for
remote procedure call,” U.S. Patent 10 536 560B2, Jan. 14, 2022.

[4] D. Jansen and H. Buttner, “Real-time ethernet: the ethercat solution,”
Computing and Control Engineering, vol. 15, no. 1, pp. 16–21, 2004.

[5] P. Brooks, “Ethernet/ip-industrial protocol,” in IEEE 8th International
Conference on Emerging Technologies and Factory Automation, vol. 2,
2001, pp. 505–514.

[6] Modbus application protocol specification v1.1b3, Modbus Organiza-
tion, Inc. Std.

[7] S.-H. Leitner and W. Mahnke, “Opc ua–service-oriented architecture
for industrial applications,” ABB Corporate Research Center, vol. 48,
no. 61-66, p. 22, 2006.

[8] A. Wollrath, R. Riggs, and J. Waldo, “A distributed object model for
the Java TM system,” Computing, vol. 9, no. 4, pp. 265–290, 1996.

[9] J. N. Scott McLean and K. Williams, Microsoft .NET Remoting.
Microsoft Press, 2002.

[10] T. M. Inc., “Matlab version: 9.13.0 (r2022b),” Natick, Massachusetts,
United States, 2022. [Online]. Available: https://www.mathworks.com
(accessed Mar. 15, 2023)

[11] R. Bitter, T. Mohiuddin, and M. Nawrocki, LabVIEW: Advanced
programming techniques. Crc Press, 2006.

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in International Conference on Robotics and
Automation, 2009.

[13] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,
“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[14] Robot raconteur vs ros. [Online]. Available: https://github.com/
robotraconteur/robotraconteur/wiki/Robot-Raconteur-vs-ROS (ac-
cessed Mar. 15, 2023)

[15] Robot raconteur directory. [Online]. Available: https://github.com/
robotraconteur/robotraconteur-directory (accessed Mar. 15, 2023)

[18] QUIC: A UDP-Based Multiplexed and Secure Transport, IETF Std.
RFC 9000, 2022.

[19] WebRTC Data Channels, IETF Std. RFC 8831, 2021.
[20] The Websocket Protocol, IETF Std. RFC 6455, 2011.

[16] Wikipedia contributors. (2023) Interface description language
— Wikipedia, the free encyclopedia. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Interface description
language&oldid=1138270495 (accessed Mar. 15, 2023)

[17] H. He, B. Aksoy, J. Wason, and J. T. Wen, “Plug-and-play software ar-
chitecture for coordinating multiple industrial robots and sensors from
multiple vendors,” in Submitted to the IEEE International Conference
on Automation Science and Engineering (CASE), 2023.

[21] The Transport Layer Security (TLS) Protocol Version 1.2, IETF Std.
RFC 5246, 2008.

[22] Web server implementations in ASP.NET Core. [Online].
Available: https://learn.microsoft.com/en-us/aspnet/core/fundamentals/
servers/?view=aspnetcore-7.0&tabs=windows (accessed Mar. 15,
2023)

[23] W. Anggoro and J. Torjo, Boost. Asio C++ Network Programming.
Packt Publishing Ltd, 2015.

[24] Pyodide: Python with the scientific stack, compiled to WebAssembly.
[Online]. Available: https://pyodide.org/en/stable/ (accessed Mar. 15,
2023)

[25] “Package quality categories,” REP 2004, ROS, Dec. 2019. [Online].
Available: https://ros.org/reps/rep-2004.html (accessed Mar. 15, 2023)

[26] Wikipedia contributors. (2022) Passive data structure — Wikipedia,
the free encyclopedia. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Passive data structure&oldid=1117381999 (accessed
Mar. 15, 2023)

[27] Python, generators. [Online]. Available: https://wiki.python.org/moin/
Generators (accessed Mar. 15, 2023)

[28] Robot raconteur (RR): An interoperable middleware for
robotics. [Online]. Available: https://arminstitute.org/projects/
robot-raconteur-rr-an-interoperable-middleware-for-robotics/ (ac-
cessed Mar. 15, 2023)

[29] H. He, C.-L. Lu, Y. Wen, G. Saunders, P. Yang, J. Schoonover, J. D.
Wason, A. Julius, and J. T. Wen, “High-speed high-accuracy spatial
curve tracking using motion primitives in industrial robots,” in IEEE
International Conference on Robotics and Automation (ICRA), 2023.

[30] Optimized robot motion program for tracking complex
geometric paths. [Online]. Available: https://arminstitute.org/projects/
optimized-robot-motion-program-for-tracking-complex... (accessed
Mar. 15, 2023)

[31] Arm institute funds eleven new technology projects. [Online]. Avail-
able: https://arminstitute.org/news/new-tech-projects-2023/ (accessed
Mar. 15, 2023)

[32] rr ros latency tests. [Online]. Available: https://github.com/johnwason/
rr ros latency tests (accessed Mar. 15, 2023)

[33] Plug-n-play robot software coordinating robots and sensor from
multiple vendors. [Online]. Available: https://www.youtube.com/
watch?v=3jhDXIRUiQY (accessed Mar. 15, 2023)

[34] Open source teach pendant programming environ-
ment. [Online]. Available: https://arminstitute.org/projects/
open-source-teach-pendant-programming-environment/ (accessed
Mar. 15, 2023)

[35] Open source teach pendant jog, save, playback. [Online]. Available:
https://www.youtube.com/watch?v=9KSYgGpG8mk (accessed Mar.
15, 2023)

[36] L. Lu and J. Wen, “Human-directed coordinated control of assistive
mobile manipulator,” International Journal of Intelligent Robotics and
Applications, vol. 1, no. 1, pp. 104–120, Feb. 2017.

[37] D. Kruse, J. Wen, and R. Radke, “Sensor-based dual-arm tele-robotic
system,” IEEE Transaction on Automation Science and Engineering,
vol. 12, no. 1, pp. 4–18, Jan. 2015.

[38] D. Carabis, K. Oakes, and J. T. Wen, “Manipulation of massive objects
in space using flexible joint manipulators,” AIAA Journal on Guidance,
Dynamics, and Control, 2021.

[39] D. S. Carabis and J. T. Wen, “Trajectory generation for flexible-joint
space manipulators,” Journal on Frontiers in Robotics and AI, section
Space Robotics, vol. 9, Mar. 2022.

https://www.mathworks.com
https://github.com/robotraconteur/robotraconteur/wiki/Robot-Raconteur-vs-ROS
https://github.com/robotraconteur/robotraconteur/wiki/Robot-Raconteur-vs-ROS
https://github.com/robotraconteur/robotraconteur-directory
https://github.com/robotraconteur/robotraconteur-directory
https://en.wikipedia.org/w/index.php?title=Interface_description_language&oldid=1138270495
https://en.wikipedia.org/w/index.php?title=Interface_description_language&oldid=1138270495
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-7.0&tabs=windows
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-7.0&tabs=windows
https://pyodide.org/en/stable/
https://ros.org/reps/rep-2004.html
https://en.wikipedia.org/w/index.php?title=Passive_data_structure&oldid=1117381999
https://en.wikipedia.org/w/index.php?title=Passive_data_structure&oldid=1117381999
https://wiki.python.org/moin/Generators
https://wiki.python.org/moin/Generators
https://arminstitute.org/projects/robot-raconteur-rr-an-interoperable-middleware-for-robotics/
https://arminstitute.org/projects/robot-raconteur-rr-an-interoperable-middleware-for-robotics/
https://arminstitute.org/projects/optimized-robot-motion-program-for-tracking-complex...
https://arminstitute.org/projects/optimized-robot-motion-program-for-tracking-complex...
https://arminstitute.org/news/new-tech-projects-2023/
https://github.com/johnwason/rr_ros_latency_tests
https://github.com/johnwason/rr_ros_latency_tests
https://www.youtube.com/watch?v=3jhDXIRUiQY
https://www.youtube.com/watch?v=3jhDXIRUiQY
https://arminstitute.org/projects/open-source-teach-pendant-programming-environment/
https://arminstitute.org/projects/open-source-teach-pendant-programming-environment/
https://www.youtube.com/watch?v=9KSYgGpG8mk

	Introduction
	Robot Raconteur Overview
	Service Definitions and Plug-and-Play
	Objects
	Data Types
	Exceptions and Error Handling
	Transports
	Discovery and Subscriptions
	Implementations
	Version 1.0 Release

	New Framework Capabilities
	Subscriptions
	Complex Numbers and Booleans
	Pods and Namedarrays
	Function Generators
	Wire Peek and Poke
	Intra Transport
	Diagnostic Logging and Taps

	Standardization
	Framework Standards
	Standard Service Types

	Standardized Drivers
	Standard Robot Drivers
	Standard Camera Drivers
	Standard Input Drivers

	Robot Motion Programs
	Performance
	Examples
	Interoperable Box Packing using Robot Raconteur
	Open Source Teach Pendant
	Assistive Robotics
	Human Guided Dual-Arm Manipulation
	Algorithm Development for Space Manipulation
	Robot Raconteur Arduino Uno Demonstration

	Conclusion
	References

