
Plug-and-Play Software Architecture for Coordinating Multiple
Industrial Robots and Sensors from Multiple Vendors

Honglu He, Burak Aksoy, Glenn Saunders, John Wason, John T. Wen

Abstract— Integrating robots from multiple vendors into
an automation ecosystem is a challenge that hinders the
deployment of industrial automation. The COVID-19 pandemic
has added urgency to the need for automation to maintain
productivity while observing physical distancing. To address
this challenge, we propose a plug-and-play software architecture
using Robot Raconteur (RR). Our approach allows quick and
seamless integration of disparate sensors and robots into a
production system, enabling complex tasks to be performed
efficiently. This technology has the potential to transform the
robotics revolution in the industry.

In this paper, we present a case study that demonstrates the
effectiveness of our plug-and-play software architecture. The
demonstration includes a plug-and-play smart teachpendant
and a mock production line that performs pick-and-place tasks.
Using Robot Raconteur enables ready integration of robots
from multiple vendors, leading to improved productivity and
cost savings.

I. INTRODUCTION

Robots have been playing a key role in advancing indus-
trial automation in the past 60 years. While robots have
significantly increased the efficiency and productivity in
industry with decreasing cost of industrial robotic systems,
its adoption is far from universal, particularly for small and
medium manufacturers. A key deterrent is the considerable
amount of time and effort required to set up and integrate
robots and sensors into an automation system. Further, once
a system is setup, it is mostly locked to particular robot
vendors preventing expansion and reconfiguration to meet
varying needs. Plug-and-play capability and interoperability
refer to the ability of users to seamlessly use devices, such as
mice and keyboards, without the need for reconfiguration or
adjustment. This concept extends to the field of robotics by
enabling the diverse usage of sensors and manipulators from
a range of vendors. This versatility allows manufacturers
to cater to unique requirements and efficiently redistribute
robots across different product lines. However, the lack of
standards has thwarted the emergence of the plug-and-play
capability in the industrial robot industry [1].

The emergence of Industry 4.0 is transforming the au-
tomation and robotics from the traditional stand-alone model
to highly interconnected services. Standardization is a key
factor in the evolution and adoption [2]. OPC Foundation

Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic
Institute, heh6@rpi.edu aksoyb2@rpi.edu

Manufacturing Innovations Center, Rensselaer Polytechnic Institute,
saundg@rpi.edu

Wason Technology, LLC, wason@wasontech.com
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic

Institute, wenj@rpi.edu

introduced Open Platform Communications Unified Archi-
tecture (OPC/UA) for Industry 4.0, including robotics [3],
but there is a lack of communication library and software
proposed for robotics to incorporate such standards. Robot
Operating System (ROS) [4] and ROS 2 [5] aim to develop
reusable robotics code in research and development, but the
plug-and-play capability remains elusive. It also has steep
learning curve, with limited platform support and security
support. ROS-Industrial has led a consortium effort to apply
ROS and ROS 2 to industrial robots [6]. It has increased
the adoption of ROS and ROS 2 but does not address plug-
and-play and interoperability among different vendors. A
Plug-and-play robotic system using LabView was proposed
in 1998 for parts assembly [7]. In [8], Nguyen introduces the
idea of smart home with plug-and-play robots and sensors
using ROS. Companies like Ready Robotics has also offered
the solution of easy programming platform (Forge OS) for
different robots, but is still tied to the programming language
of the underlying industrial robots [9].

However, the seamless plug-and-play capability for multi-
ple interoperable robots with minimal or no setup from users
is still absent.

This paper presents a solution to this gap. Our approach
is based on the open source middleware Robot Raconteur
(RR) developed by Wason Technology to interface with
different robots and sensors [10], [11], and its use cases have
been deployed in different robotics systems [12]–[14]. As
a demonstration, we have developed a testbed with robots
from three different vendors (ABB, Universal Robotics, and
Sawyer) sharing the same workspace with multiple types of
end-effectors and sensors. We have developed a smart RR-
enabled teachpendant that can connect to and program differ-
ent robots. Partnering with a local manufacturing business,
we developed a mock production line with 3 robots picking
small objects from bins and filling into package boxes on
a moving conveyor belt. The testbed has a virtual simulated
version developed during the pandemic with exactly the same
interface, and this capability allows users to simulate tests
with real-time position streaming control.

Contribution: We incorporate RR standardized in-
terface with robots from different vendors, and
demonstrate the plug-and-play capability using an
RR-enabled smart teachpendant and a mock robotic
production line with interchangeability.

This paper is organized as follows. Section II briefly
summarizes the key attributes of the Robot Raconteur Mid-



dleware system and describes RR standardized interface for
robots and sensors. Section III describes the smart teachpen-
dant implementation and its use cases. Section IV presents
the demonstration testbed. Section V lists the possible al-
ternative solutions for plug-and-play capability and RR’s
advantage. Section VI presents the conclusion and future
work.

A directory of links to available Robot Raconteur software
and projects has been created [15]. The teach pendant
software can be found in the “pyri-project” GitHub orga-
nization [16]. Refer to these locations for URL links to the
repositories listed in this paper.

II. ROBOT RACONTEUR OVERVIEW

A. RR Interface Standards and Drivers

Robots from different vendors have different API and
standards, and that could potentially pose a big challenge if a
system needs to incorporate different robots. RR is an object-
oriented communication library for robotics and automation
systems, and it is compatible with most major platforms and
programming languages [17]. Supported platforms include
Windows, Linux, MacOS, iOS, Android, and FreeBSD.
Supported programming languages include C++, C#, Python,
MATLAB, Java, and LabView. RR is adding support for
more platforms and programming languages over time.

Fig. 1: Robot Raconteur Client-Service Architecture [10]

RR uses a service-client structure as its basic architecture,
shown in Fig. 1, enabling easy integration of disparate sys-
tems and seamless communication between different robots,
sensors, and other devices. Service nodes typically contain
one or more service objects, each with attributes defined in
the RR service definition. By registering an RR service with
a service name and declared object, those objects are exposed
to the local area network (LAN), allowing clients to connect
by specifying the service’s URL. This provides access to

the service’s attributes and functions, allowing for quick and
easy communication and control of the hardware.

RR offers several advantages over other frameworks, in-
cluding a short learning curve, minimal setup time, multi-
platform and multi-language support, and competitive latency
performance compared to ROS and ROS 2 [17]. Drivers are
generally developed as RR services, with client nodes as the
user interface. RR provides plug-and-play behavior using two
strategies [17].

• Dynamic runtime client proxy and type generation for
scripting languages such as Python, MATLAB, and
LabView

• Standardized service types for classes of devices
The dynamic runtime capability is typically used during
development. The standardized service types are used to
provide interoperability between different devices. Clients
are designed to understand service types that correspond to
classes of devices. Devices and drivers that implement the
standard service type can be interchangeably used by the
client without modification. This plug-and-play capability
allows for easy integration of new devices into existing
systems without the need for extensive development effort.

As part of the Advanced Robotics for Manufacturing
Institute (ARM) project “Robot Raconteur (RR): An Inter-
operable Middleware for Robotics” [18], standard service
definitions were created that represented multiple classes of
devices and allowed for interoperability between different
devices. The developed service definitions are available on
GitHub. Currently the published “Group 1” has 45 service
definitions, 41 object types, 162 structures, 71 namedarrays,
and 5 pods defined. The standard definitions [19] and differ-
ent RR directories [15] are available on Github.

B. Robot Drivers

Fig. 2: Robot Raconteur Abstract Robot Class Structure

RR is a comprehensive solution for standardizing commu-
nication interfaces for robots and sensors. Each robot driver
is implemented as an RR service node, communicating with
a single robot and exposing the standard robot object over
the LAN, with optional password security. To connect to the
service, initializing an RR client connection will return the



object containing all the functions and properties defined in
the RR description. This allows users to control different
robots with the same client script, using the standard RR
robot definition.

Example 1 in [17] shows the standard robot definition
com.robotraconteur.robotics.robot.Robot. It
is the standardized RR definition that is adaptable to all
industrial robots with RR drivers.

Each robot has a distinct “Robot Info” yaml description
file that contains basic robot metadata such as name, joint
velocity/acceleration limits, kinematics, and tool information.
The driver loads this file automatically and provides this
information to the client as metadata. In our setup, the
robot driver runs on a standalone hardware, specifically the
BeagleBone x15 board, loaded automatically as a boot-and-
run system.

Figure 2 shows a block diagram for “Abstract Robot”.
Abstract Robot is a software library that provides
common functionality for standard robots that implement
com.robotraconteur.robotics.robot.Robot.
Robots can support multiple command modes, including jog,
trajectory, real-time joint position, real-time joint velocity,
and home. The metadata informs clients what modes are
supported. Abstract Robot allows for the rapid development
of drivers, since for most robots only the robot-specific
interface needs to be developed.

C. Sensor Drivers

Similar to robot drivers, each sensor possesses its own
hardware running the standard RR service. For object detec-
tion devices, RR service shares the same service definition,
enabling clients within the system to execute identical code
to verify detected objects. The Cognex sensor, an industrial
machine vision camera, operates as a black box with onboard
template matching [20] It is configured through a proprietary
client software application on Windows, and at runtime
directly outputs detected object pose and confidence score
via the TCP/IP protocol. Consequently, the RR driver only
reads the output from Cognex and configures the data in a
standard object detection definition. For Kinect Azure or a
webcam, the RR driver processes the RGB image, runs the
Yolo-v5 Object Detector [21], and configures the data in the
same standard object detection definition. Utilizing cameras
with open-source object detection libraries demonstrates the
implementation of Artificial Intelligence (AI) with plug-and-
play capabilities. In the developed testbed, object detection
with Kinect Azure operates on the runtime computer due to
computational requirements.

D. Tool Drivers and Configuration

Robot end-effector tools vary in form, thus we use a more
general standard definition. The robot yaml file includes
tool information, such as mass and tool center point (TCP)
transformation from the robot flange. Tools operating on
separate controllers or devices are considered individual
plug-and-play nodes. To swap tools, users simply update the
tool information in the robot yaml file. In instances where

the tool operates on the robot controller I/O module, the tool
service can run within the same robot driver node or inde-
pendently. For plug-and-play purposes, we have configured
robot tools as separate nodes to easily interchange different
tools.

E. Plug and Play Capability

Each robot or sensor includes designated hardware run-
ning RR drivers to interface with the robot or sensor. This
approach emulates an RR-enabled device, with RR drivers
interfacing with robots or sensors and exposing standard
services over the LAN. Hardware used includes BeagleBone
X15 boards and Raspberry Pi 3B+. On each hardware, the
RR drivers transform into a systemd service, enabling
automatic startup upon booting without manual setup. Each
RR driver contains a node name and a service name (or
multiple, if running multiple services within a node), with an
optional password. As each service possesses a unique URL,
a client can easily connect to the service directly with the
URL. To enhance plug-and-play capabilities, we incorporate
RR service auto-discovery functionality to browse all running
RR services within the LAN and search based on user-
specified service and node names.

In general, users can control a robot by simply powering
up the robot and the hardware running the RR service.
Clients can then connect to the service by providing the
service name in the LAN.

III. SMART TEACHPENDANT

The ARM project “Open Source Teachpendant Program-
ming Environment” [22] referred as “Smart Teachpendant”
aims to create a vendor-independent programming platform
by deploying the standardized RR drivers and their plug-
and-play property. It provides an easy-to-use, high-level user
interface and programming environment that makes advanced
open-source robotics technologies accessible to a wider range
of users. It simplifies programming and enhances the ver-
satility of robotics applications for those without extensive
programming experience. This section demonstrates the ef-
fectiveness of the plug-and-play architecture by summarizing
the approach and key components of the smart teachpendant
system in the following subsections.

A. Approach and Architecture

The overall architecture of the smart teachpendant system
is shown in Fig. 3. The open-source system consists of
a hand-held teachpendant with touch screen interface. The
teachpendant has an enable switch and E-stop button that
connect directly to the robot controller. A Space Mouse [23]
joystick allows the user to jog the robot in either joint or
Cartesian mode. User definable auxiliary buttons provide ad-
ditional customizable functionalities. The teachpendant also
allows the user to edit or execute robot programs and monitor
status of robots and state of various signals. The runtime
computer provides the heavy lifting behind the scene. It
stores the user programs (plugins) and allows execution of
the specified program. User programs are executed inside



Fig. 3: Overall Smart Teachpendant Architecture: Demonstrates the approach of connecting the standard RR drivers to the
user interface through the runtime computer.

the sandbox using the Python Restricted Industrial (PyRI)
[24] dialect that optimizes Python language for use in
industrial programming environments. To create and edit the
user programs, Blockly Visual Programming [25] is used
as an alternative to text-based Python to ease adoption and
implementation. All the communication is performed by RR.
The runtime computer uses the standardized RR drivers to
interface to the physical robots and sensors. For ROS-enabled
devices, an RR-to-ROS bridge may be used.

B. Runtime Environment
Runtime Environment is the core software that communi-

cates with hardware, executes user programs, and interacts
with the various devices that make up the system. The
Runtime Environment is executed on the Runtime Computer,
which is a permanent part of the automation system. The
Runtime Environment communicates with the teachpendant
WebUI Interface, which a technician can use to operate the
automation system and develop user programs. The Runtime
Environment is mostly developed in Python, using a micro-
services architecture loosely based on serverless computing
architecture [26]. Functionality is broken up into multiple
small processes, with each process implementing part of the
total functionality and communicating with other services
such as device discovery and management, user program
execution, variable storage database, WebUI server, jog and
motion services, and vision related services (e.g., camera
calibration, fiducial marker detection etc.). The Runtime
Environment uses RR for communication between services
within the runtime, and to communicate with other devices in
the automation system. The RR standard service types and
drivers discussed in Section II-A are used to interact with
devices.

C. WebUI and Programming
The user interface of the teachpendant, WebUI, is designed

to run inside a modern web browser. It uses web browser-
based implementation without the need of any internet con-
nection. Hence, it can be used on touch screen panels or

standard laptop computers easily. The default user interface
provides standard equipment management (e.g., robot jog-
ging, waypoint teaching and playback, camera calibration,
etc. (Fig. 4)). WebUI is also customizable to tailor to different
plugins beyond the default components for the integration of
other types of tools and functionalities (e.g., integration of
force/torque sensors or deep learning trained object detection
modules).

To create a user-friendly programming environment for
novice users, the WebUI leverages the Blockly library. This
is accomplished by integrating the Blockly editor workspace
into the teachpendant WebUI and adding new blocks for
robotics functionality. Blockly blocks and categories are
added to the teachpendant using plugins. Each added Blockly
block has a corresponding “generator” function that gen-
erates the appropriate Python code for the block based on
what the user has selected. This function is called during the
Python generation process for the block diagram. Typically
each block will correspond to a single sandbox function.
For more advanced users, scripting with the PyRI procedure
editor is also available in the WebUI.

D. Hardware

For physical hardware (Fig. 5), a runtime computer cabinet
and two prototype teachpendants with touch screen interface
are implemented. The first prototype uses a touch screen
tablet computer, Microsoft Surface Go [27]. The second pro-
totype uses Raspberry Pi 4 [28] connected to a touch screen
display. We adopt an open source design philosophy using
easily sourced components, requiring minimal machining,
while carefully consider the component cost. The CAD files
for the design as well as the complete bill of materials are all
open source, and may be readily replicated. The teachpendant
may be adapted for either right-handed or left-handed users.
The hardware prototypes may be considered as a ruggedized
DIY design that considers both industrial and DIY users. The
implementation is industrial or near-industrial. The emphasis
is on 3D printed parts, and uses metals as needed. The



(a) Jog Panel

(b) Blockly Programming Panel

Fig. 4: Example Teachpendant User Interface Panels

design is modular for the I/O module interface and runtime
computer cabinet entries. The cables have sufficient length
(15’) to allow user mobility. They have cable covers and
strain reliefs for better protection and robustness.

E. Demonstrations

The project demonstrated the jogging, teach-and-playback,
adding a new robot, execution of a pick and place col-
laboration tasks with ABB IRB1200, Sawyer, UR5, and
Tormach ZA-6 robots from the same teachpendant system
thanks to the implemented plug-and-play structure of robots.
In addition, vision functionalities such as camera intrinsic
and extrinsic calibrations, robot pose origin calibration, and
vision-guided motion has been demonstrated. The overall
process for a user to set up a vision-guided pick and place
task given RR-enabled robots and a camera is demonstrated
in the videos at [29], [30], and [31].

IV. DEMONSTRATION TESTBED

Pick and place tasks with conveyor belts are among the
most common scenarios in the industry. A local manufactur-
ing business has provided us with a sample box containing
soap, toothpaste, perfume, and a round bottle. In this paper,
we use Sawyer, UR5, and ABB IRB1200 robots from three
different vendors to accomplish pick and place tasks on
a moving conveyor belt, demonstrating the plug-and-play
capability with RR.

The testbed is a smart and re-configurable system, contain-
ing three robots, a moving conveyor belt, and two overhead
cameras: Cognex and Kinect Azure, served as object local-
ization sensors. Four bins holding the objects are placed on

(a) Open-Source Teachpendant Raspberry Pi 4 Proto-
type

(b) Runtime Computer Cabinet

Fig. 5: Smart Teachpendant Hardware

Fig. 6: Pick-and-Place Schematic: Robots take position #1,
#2 and #3 to pick up objects from bins and fill in empty
trays on the conveyor belt.

each side of the conveyor belt. The conveyor belt is moving
at a preset constant speed. Our testbed schematic is shown
in Fig. 6

Robots are mounted on mobile pedestals, and each robot
has an OpenCV Aruco tag on its end-effector, allowing the
overhead camera to detect and calibrate robot pose in camera
frame. The system architecture is depicted as Fig. 9. Each
robot/sensor is connected to the designated hardware running
an RR service. And the hardware exposes the RR service
over the LAN. There are also other RR services running on
the run-time computer, including Yolo-v5 detection service
and collision checking service which require more computa-



Fig. 7: Testbed Setup: Physical testbed for UR5, Sawyer and
ABB IRB1200 collaboration to fill an empty box with four
different objects from the bins.

(a) Yolo-v5 Object Detection (b) Cognex Object Detection

Fig. 8: Object Detection: A snippet of Kinect Azure running
Yolo-v5 object detection and Cognex machine camera on
four different objects.

tional power. A universal client accepts robot (Sawyer, UR,
or ABB) and object arguments from users to assign specific
robots to pick and place objects through the RR interface.

A. Reconfigurability

This testbed is easily reconfigurable in ways like swapping
robots, sensors, objects and grippers. Standard RR drivers
simplify the interchangeability of existing robots/sensors,
while the auto-calibration process updates the robot relative
pose within the testbed. The motion planning service gen-
erates collision-free trajectories for all robots. On the run-
time client computer, there are local yaml files containing
the testbed calibration information, which can be modified
through a human interface introduced in Section IV-D.

B. Auto-calibration

To introduce a new robot to the system, it is crucial to
obtain an accurate relative pose to the world frame. By
providing initial and final robot end-effector poses, in which
the OpenCV Aruco tag is visible to the overhead camera, the
robot moves with a fixed tool orientation. Simultaneously,

Fig. 9: Testbed Architecture: Each robot or sensor has its
designated hardware running RR service, and the hardware
is connected to the LAN, exposing the running service. Users
can connect to all different services under the LAN using a
client on a PC.

the overhead camera detection service reports the tag pose.
Regression is performed between two sets of points to find
the transformation matrix: points in the robot base frame and
points in the world frame.

C. Motion Planning

For safety, tt is essential for robots to avoid collisions
with the environment and other robots. In this paper, we
use the Tesseract library [32] developed by ROS-Industrial
for collision checking. Tesseract collision checking inputs a
(.urdf) file containing the environment (static obstacles)
and robots (rigid body chain) and outputs the closest two
points and minimum distance (or penetration distance) be-
tween any two rigid bodies. We developed an RR service
for Tesseract, which reads real-time robot joint positions and
checks for potential collisions.

Given the desired pose to pick/place an object, a planner
service commands the robot toward destination with real-
time collision avoidance. Our motion planning service is a
centralized node for all robots, planning trajectory with real-
time collision avoidance. Define the collision vector as dc

pointing from closest point from robot to the environment,
and collision distance d = −n ‖dc‖, where n ∈ {−1, 1}
with -1 and 1 corresponding to no collision and collision
respectively. A collision will result in negative collision
distance as penetration distance. Denote J t0 and J i0 as robot
Jacobian of tool and ith link with respect to robot base frame
respectively, and J(p) is the positional part of the Jacobian.
For a robot, with a desired tool spatial velocity ν∗ toward
target pose, current joint position (q), the real-time collision
avoidance is formed as

min
δq

∥∥J t0(q)δq− ν∗∥∥2 + ‖δq‖2Wq

subject to
− δqmax 4 δq 4 δqmax,

dc

‖dc‖
J i0(p)(q)δq ≤ h(d).

(1)



where δqmax is the maximum size of a step size for
joint position increments, h(d) is a control barrier function
depending on the collision distance d, i is the robot link
number containing the closest point to environment, Wq

is a weightfactor. The minimization problem is realized
by quadratic programming (QP) between the current and
desired pose with collision constraints [33], [34]. The real-
time position command for the robot is

qcmd ← q+ δq (2)

By taking advantage of a centralized planner, each robot
can utilize the same planner in real-time with synchronized
updated joint positions to prevent possible collision.

D. Client Interface

Fig. 10: Python User Interface for Pick and Place Task: users
can monitor robots/sensor status, run vision-based calibration
routine or manually override testbed information.

In order to better assist users in customizing different
robots for the smart testbed, a simple Python-Tk interface
is designed, allowing users to input testbed and robot infor-
mation as shown in Fig. 10. This dedicated interface enables
users to specify details such as robot height, calibration con-
figuration, and RR service URL. The interface also includes
service auto-discovery based on robot names, automatically
filling in the URL section. In general, this interface serves
the role as the testbed data storage and manipulation in a
local yaml file, enabling the client to pick up configurable
data and adapt to the smart testbed when executed.

E. Gazebo Simulation Interface

Robot simulation is often needed in both research and
industrial areas, with Gazebo being a popular choice [35].
Typically, Gazebo is used together with ROS, but it is a
standalone simulation software. In this project, we have
developed an RR Gazebo plugin such that a standard RR
robot driver service is able to interface with Gazebo directly
(on both Ubuntu and Windows). As shown in Fig. 11, robot
geometry definition files (.sdf) are used in the scene to
spawn robot models, and RR simulation robot drivers expose
the standard robot service definition over the LAN. In this
case, by using the same client for the actual testbed task can
users achieve the behavior in Gazebo simulation.

Fig. 11: Gazebo Simulation: robot models and environment
objects are spawned with user-defined (.urdf) files, and
RR Gazebo plugin controls the simulation joint angles while
exposing them as a standard RR robot interface.

V. ALTERNATIVE SOLUTIONS

This paper has presented a method to develop plug-and-
play capability and interoperability with robots and sensors
using RR, though implementing with ROS is also an alterna-
tive. ROS is widely used in the field of robotics, and robots
equipped with ROS may be more accessible for existing ROS
users. Some ROS-enabled robots like Sawyer and Tormach
robots are running ROS in their internal controller, and
rostopic and rosservice will be exposed to the LAN
after configuring ROS IP and MASTER URI. However, each
ROS node is configured differently for different robots and
may contain customized messages or service types, and users
still need to read through the API to command the robots.
If ROS-enabled robots share the same interface, then it is
also possible to achieve plug-and-play capability demon-
strated in this paper. Additionally, ROS does not support
auto-discovery for nodes within the LAN, and the effort
required for users to learn and set up ROS on a computer is
significantly higher than with RR.

By standardizing robot definitions using RR, all robots
sharing the standardized interface can be commanded with
hassle-free plug-and-play capabilities. The effort to develop
an RR driver for a new robot is also significantly lower than
using ROS because RR is compatible with most platforms
and programming languages. For any unique sensor or device
not available in standard definitions, it is always possible
to customize the definition for an RR service, allowing
flexibility for researchers and users with specific needs.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this project, we have developed standard RR robot
drivers for Sawyer, Baxter, UR series, ABB IRC5 series,
Tormach ZA6, and Gazebo simulation robots. Sensor drivers
include Webcam, Cognex, Kinect Azure, Realsense, and ATI
F/T sensor. All these drivers follow standard definitions and
offer complete plug-and-play capabilities for users with the



same client code. Current supported devices and systems are
listed in Robot Raconteur Directory [15], and more drivers
will be developed in future projects.

Additionally, this paper demonstrates the plug-and-play
capability using Robot Raconteur with our smart teach-
pendant for simple programming and a mock production
line robotic system. Further development including Tesseract
collision-free path planning, motion visualization, interactive
debugging and mobile robot support will be key features for
the smart teachpendant. In the future, we plan to add more
functionalities to it, enabling users to easily set up the same
mock production line system easily with the teachpendant
with a motion planning plugin.

ACKNOWLEDGMENT

Funding for this research was provided by the ARM
(Advanced Robotics for Manufacturing) Institute. The ARM
Institute is sponsored by the Office of the Secretary of De-
fense under Agreement Number W911NF-17-3-0004. Views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Office of
the Secretary of Defense or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

REFERENCES

[1] M. Jändel, “Plug-and-play robotics,” in NATO Symposium on
Emerged/Emerging “Disruptive” Technologies, 2011, pp. IST–099.

[2] N. Velásquez Villagrán, E. Estevez, P. Pesado, and J. De Juanes Mar-
quez, “Standardization: A key factor of industry 4.0,” in 2019 Sixth
International Conference on eDemocracy & eGovernment (ICEDEG),
2019, pp. 350–354.

[3] OPC-Foundation, Information Model.
[4] Stanford Artificial Intelligence Laboratory et al., “Robotic operating

system.” [Online]. Available: https://www.ros.org
[5] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall,

“Robot operating system 2: Design, architecture, and uses in the wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.

[6] ROS-Industrial, “Ros-industrial,” 2022. [Online]. Available: https:
//rosindustrial.org/

[7] G. Bright and J. Potgieter, “Pc-based mechatronic robotic plug and
play system for part assembly operations,” in IEEE International
Symposium on Industrial Electronics. Proceedings. ISIE’98 (Cat.
No.98TH8357), vol. 2, 1998, pp. 426–429 vol.2.

[8] S. M. Nguyen, C. Lohr, P. Tanguy, and Y. Chen, “Plug and play
your robot into your smart home: Illustration of a new framework,”
KI - Künstliche Intelligenz, vol. 31, no. 3, pp. 283–289, Aug 2017.
[Online]. Available: https://doi.org/10.1007/s13218-017-0494-8

[9] Ready Robotics , “Forgeos.” [Online]. Available: https://www.
ready-robotics.com/solutions/forgeos

[10] J. D. Wason and J. T. Wen, “Robot raconteur: A communication archi-
tecture and library for robotic and automation systems,” in 2011 IEEE
International Conference on Automation Science and Engineering,
2011, pp. 761–766.

[11] J. D. Wason, “Robot raconteur® version 0.8: An updated communica-
tion system for robotics, automation, building control, and the internet
of things,” in 2016 IEEE International Conference on Automation
Science and Engineering (CASE), 2016, pp. 595–602.

[12] H. He, G. Saunders, and J. T. Wen, “Robotic fabric fusing using
a novel electroadhesion gripper,” in 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE), 2022,
pp. 2407–2414.

[13] D. Kruse, R. J. Radke, and J. T. Wen, “A sensor-based dual-arm tele-
robotic manipulation platform,” in 2013 IEEE International Confer-
ence on Automation Science and Engineering (CASE), 2013, pp. 350–
355.

[14] ——, “Collaborative human-robot manipulation of highly deformable
materials,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 3782–3787.

[15] Robot raconteur directory. [Online]. Available: https://github.com/
robotraconteur/robotraconteur-directory

[16] Pyri open source teach pendant github organization. [Online].
Available: https://github.com/pyri-tech

[17] J. Wason and J. T. Wen, “Robot raconteur®: Updates on an open
source interoperable middleware for robotics,” in 2023 IEEE 19th
International Conference on Automation Science and Engineering
(CASE), 2023.

[18] Robot raconteur (RR): An interoperable middleware for
robotics. [Online]. Available: https://arminstitute.org/projects/
robot-raconteur-rr-an-interoperable-middleware-for-robotics/

[19] Robot raconteur standard service definition types. [Online]. Available:
https://github.com/robotraconteur/robotraconteur standard robdef

[20] “Cognex introduces video camera designed specifically for industrial
machine vision applications,” Sensor Review, vol. 19, no. 3, Jan 1999.
[Online]. Available: https://doi.org/10.1108/sr.1999.08719caf.003

[21] G. Jocher, A. Stoken, and et. al., “ultralytics/yolov5: v3.0,” Aug.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3983579

[22] “Open source teach pendant programming environment,” (accessed
Mar. 15, 2023). [Online]. Available: https://arminstitute.org/projects/
open-source-teach-pendant-programming-environment/

[23] “Spacemouse compact,” (Accessed on Mar. 15, 2023). [Online].
Available: https://3dconnexion.com/us/product/spacemouse-compact/

[24] “The python restricted industrial (pyri),” (Accessed on Mar. 15,
2023). [Online]. Available: https://github.com/pyri-project/pyri-core/
blob/master/README.md

[25] “Blockly: A javascript library for building visual programming
editors.” (Accessed on Mar. 15, 2023). [Online]. Available:
https://developers.google.com/blockly

[26] “Serverless on aws.” (Accessed on Mar. 15, 2023). [Online].
Available: https://aws.amazon.com/serverless/

[27] “Microsoft surface go 2.” (Accessed on Mar. 15, 2023). [On-
line]. Available: https://www.microsoft.com/en-us/surface/business/
surface-go-2

[28] “Raspberry pi 4.” (Accessed on Mar. 15, 2023). [Online]. Available:
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[29] “Open source teach pendant jog, save, playback.” (Accessed on Mar.
15, 2023). [Online]. Available: https://www.youtube.com/watch?v=
9KSYgGpG8mk

[30] “Camera calibration using open source teach pendant.” (Accessed on
Mar. 15, 2023). [Online]. Available: https://www.youtube.com/watch?
v=0Q6a07FSsBc

[31] “Vision guided collaboration using open source teach pendant.”
(Accessed on Mar. 15, 2023). [Online]. Available: https://www.
youtube.com/watch?v=jF BGaFI7Qc

[32] ROS-Industrial, “Tesseract,” 2022. [Online]. Available: https://github.
com/tesseract-robotics/tesseract

[33] H. He, C.-l. Lu, Y. Wen, G. Saunders, P. Yang, J. Schoonover,
J. Wason, A. Julius, and J. T. Wen, “High-speed high-accuracy spatial
curve tracking using motion primitives in industrial robots,” in 2023
IEEE International Conference on Robotics and Automation (ICRA),
2023, pp. 12 289–12 295.

[34] S. Seereeram and J. Wen, “A global approach to path planning for
redundant manipulators,” in [1993] Proceedings IEEE International
Conference on Robotics and Automation, 1993, pp. 283–288 vol.2.

[35] C. E. Agüero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu,
B. Gerkey, S. Paepcke, J. L. Rivero, J. Manzo, E. Krotkov, and
G. Pratt, “Inside the virtual robotics challenge: Simulating real-time
robotic disaster response,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 494–506, 2015.

https://www.ros.org
https://rosindustrial.org/
https://rosindustrial.org/
https://doi.org/10.1007/s13218-017-0494-8
https://www.ready-robotics.com/solutions/forgeos
https://www.ready-robotics.com/solutions/forgeos
https://github.com/robotraconteur/robotraconteur-directory
https://github.com/robotraconteur/robotraconteur-directory
https://github.com/pyri-tech
https://arminstitute.org/projects/robot-raconteur-rr-an-interoperable-middleware-for-robotics/
https://arminstitute.org/projects/robot-raconteur-rr-an-interoperable-middleware-for-robotics/
https://github.com/robotraconteur/robotraconteur_standard_robdef
https://doi.org/10.1108/sr.1999.08719caf.003
https://doi.org/10.5281/zenodo.3983579
https://arminstitute.org/projects/open-source-teach-pendant-programming-environment/
https://arminstitute.org/projects/open-source-teach-pendant-programming-environment/
https://3dconnexion.com/us/product/spacemouse-compact/
https://github.com/pyri-project/pyri-core/blob/master/README.md
https://github.com/pyri-project/pyri-core/blob/master/README.md
https://developers.google.com/blockly
https://aws.amazon.com/serverless/
https://www.microsoft.com/en-us/surface/business/surface-go-2
https://www.microsoft.com/en-us/surface/business/surface-go-2
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.youtube.com/watch?v=9KSYgGpG8mk
https://www.youtube.com/watch?v=9KSYgGpG8mk
https://www.youtube.com/watch?v=0Q6a07FSsBc
https://www.youtube.com/watch?v=0Q6a07FSsBc
https://www.youtube.com/watch?v=jF_BGaFI7Qc
https://www.youtube.com/watch?v=jF_BGaFI7Qc
https://github.com/tesseract-robotics/tesseract
https://github.com/tesseract-robotics/tesseract

	INTRODUCTION
	Robot Raconteur Overview
	RR Interface Standards and Drivers
	Robot Drivers
	Sensor Drivers
	Tool Drivers and Configuration
	Plug and Play Capability

	Smart Teachpendant
	Approach and Architecture
	Runtime Environment
	WebUI and Programming
	Hardware
	Demonstrations

	Demonstration Testbed
	Reconfigurability
	Auto-calibration
	Motion Planning
	Client Interface
	Gazebo Simulation Interface

	Alternative Solutions
	Conclusion and Future Directions
	References

